About the Author Best-selling author Herbert Schildt has written extensively about programming for over three decades and is a leading authority on the Java language. His books have sold millions of copies worldwide and have been translated into all major foreign languages. He is the author of numerous books on Java, including Java: A Beginner’s Guide, Herb Schildt’s Java Programming Cookbook, Introducing JavaFX 8 Programming, and Swing: A Beginner’s Guide. He has also written extensively about C, C++, and C#. Although interested in all facets of computing, his primary focus is computer languages. Schildt holds both graduate and undergraduate degrees from the University of Illinois. His website is www.HerbSchildt.com.
About the Technical Editor Dr. Danny Coward has worked on all editions of the Java platform. He led the definition of Java Servlets into the first version of the Java EE platform and beyond, web services into the Java ME platform, and the strategy and planning for Java SE 7. He founded JavaFX technology and, most recently, designed the largest addition to the Java EE 7 standard, the Java WebSocket API. From coding in Java, to designing APIs with industry experts, to serving for several years as an executive to the Java Community Process, he has a uniquely broad perspective into multiple aspects of Java technology. In addition, he is the author of two books on Java programming: Java WebSocket Programming and Java EE: The Big Picture. Most recently, he has been applying his knowledge of Java to solving problems in the field of robotics. Dr. Coward holds a bachelor’s, master’s, and doctorate in mathematics from the University of Oxford.
Copyright © 2019 by McGraw-Hill Education (Publisher). All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. ISBN: 978-1-26-044024-9 MHID: 1-26-044024-9 The material in this eBook also appears in the print version of this title: ISBN: 978-1-26-044023-2, MHID: 1-26-044023-0. eBook conversion by codeMantra Version 1.0 All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com. Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. All other trademarks are the property of their respective owners, and McGraw-Hill Education makes no claim of ownership by the mention of products that contain these marks. Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates. Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this work and is not responsible for any errors or omissions or the results obtained from the use of
such information. Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in this Work, and is not responsible for any errors or omissions. TERMS OF USE This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms. THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract,
tort or otherwise.
Contents at a Glance Part I The Java Language 1 The History and Evolution of Java 2 An Overview of Java 3 Data Types, Variables, and Arrays 4 Operators 5 Control Statements 6 Introducing Classes 7 A Closer Look at Methods and Classes 8 Inheritance 9 Packages and Interfaces 10 Exception Handling 11 Multithreaded Programming 12 Enumerations, Autoboxing, and Annotations 13 I/O, Try-with-Resources, and Other Topics 14 Generics 15 Lambda Expressions 16 Modules Part II The Java Library 17 String Handling 18 Exploring java.lang 19 java.util Part 1: The Collections Framework 20 java.util Part 2: More Utility Classes 21 Input/Output: Exploring java.io 22 Exploring NIO 23 Networking 24 Event Handling 25 Introducing the AWT: Working with Windows, Graphics, and Text
26 Using AWT Controls, Layout Managers, and Menus 27 Images 28 The Concurrency Utilities 29 The Stream API 30 Regular Expressions and Other Packages Part III Introducing GUI Programming with Swing 31 Introducing Swing 32 Exploring Swing 33 Introducing Swing Menus Part IV Applying Java 34 Java Beans 35 Introducing Servlets Part V Appendixes A Using Java’s Documentation Comments B Introducing JShell C Compile and Run Simple Single-File Programs in One Step Index
Part I The Java Language Chapter 1 The History and Evolution of Java Java’s Lineage The Birth of Modern Programming: C C++: The Next Step The Stage Is Set for Java The Creation of Java The C# Connection How Java Impacted the Internet Java Applets Security Portability Java’s Magic: The Bytecode Moving Beyond Applets A Faster Release Schedule Servlets: Java on the Server Side The Java Buzzwords Simple Object-Oriented Robust Multithreaded Architecture-Neutral Interpreted and High Performance Distributed
Dynamic The Evolution of Java A Culture of Innovation Chapter 2 An Overview of Java Object-Oriented Programming Two Paradigms Abstraction The Three OOP Principles A First Simple Program Entering the Program Compiling the Program A Closer Look at the First Sample Program A Second Short Program Two Control Statements The if Statement The for Loop Using Blocks of Code Lexical Issues Whitespace Identifiers Literals Comments Separators The Java Keywords The Java Class Libraries Chapter 3 Data Types, Variables, and Arrays Java Is a Strongly Typed Language The Primitive Types Integers byte short
int long Floating-Point Types float double Characters Booleans A Closer Look at Literals Integer Literals Floating-Point Literals Boolean Literals Character Literals String Literals Variables Declaring a Variable Dynamic Initialization The Scope and Lifetime of Variables Type Conversion and Casting Java’s Automatic Conversions Casting Incompatible Types Automatic Type Promotion in Expressions The Type Promotion Rules Arrays One-Dimensional Arrays Multidimensional Arrays Alternative Array Declaration Syntax Introducing Type Inference with Local Variables Some var Restrictions A Few Words About Strings Chapter 4 Operators Arithmetic Operators
The Basic Arithmetic Operators The Modulus Operator Arithmetic Compound Assignment Operators Increment and Decrement The Bitwise Operators The Bitwise Logical Operators The Left Shift The Right Shift The Unsigned Right Shift Bitwise Operator Compound Assignments Relational Operators Boolean Logical Operators Short-Circuit Logical Operators The Assignment Operator The ? Operator Operator Precedence Using Parentheses Chapter 5 Control Statements Java’s Selection Statements if switch Iteration Statements while do-while for The For-Each Version of the for Loop Local Variable Type Inference in a for Loop Nested Loops Jump Statements Using break Using continue
Chapter 6 Introducing Classes Class Fundamentals The General Form of a Class A Simple Class Declaring Objects A Closer Look at new Assigning Object Reference Variables Introducing Methods Adding a Method to the Box Class Returning a Value Adding a Method That Takes Parameters Constructors Parameterized Constructors The this Keyword Instance Variable Hiding Garbage Collection A Stack Class Chapter 7 A Closer Look at Methods and Classes Overloading Methods Overloading Constructors Using Objects as Parameters A Closer Look at Argument Passing Returning Objects Recursion Introducing Access Control Understanding static Introducing final Arrays Revisited Introducing Nested and Inner Classes Exploring the String Class Using Command-Line Arguments
Varargs: Variable-Length Arguments Overloading Vararg Methods Varargs and Ambiguity Local Variable Type Inference with Reference Types Chapter 8 Inheritance Inheritance Basics Member Access and Inheritance A More Practical Example A Superclass Variable Can Reference a Subclass Object Using super Using super to Call Superclass Constructors A Second Use for super Creating a Multilevel Hierarchy When Constructors Are Executed Method Overriding Dynamic Method Dispatch Why Overridden Methods? Applying Method Overriding Using Abstract Classes Using final with Inheritance Using final to Prevent Overriding Using final to Prevent Inheritance Local Variable Type Inference and Inheritance The Object Class Chapter 9 Packages and Interfaces Packages Defining a Package Finding Packages and CLASSPATH A Short Package Example Packages and Member Access An Access Example
Importing Packages Interfaces Defining an Interface Implementing Interfaces Nested Interfaces Applying Interfaces Variables in Interfaces Interfaces Can Be Extended Default Interface Methods Default Method Fundamentals A More Practical Example Multiple Inheritance Issues Use static Methods in an Interface Private Interface Methods Final Thoughts on Packages and Interfaces Chapter 10 Exception Handling Exception-Handling Fundamentals Exception Types Uncaught Exceptions Using try and catch Displaying a Description of an Exception Multiple catch Clauses Nested try Statements throw throws finally Java’s Built-in Exceptions Creating Your Own Exception Subclasses Chained Exceptions Three Additional Exception Features Using Exceptions
Chapter 11 Multithreaded Programming The Java Thread Model Thread Priorities Synchronization Messaging The Thread Class and the Runnable Interface The Main Thread Creating a Thread Implementing Runnable Extending Thread Choosing an Approach Creating Multiple Threads Using isAlive( ) and join( ) Thread Priorities Synchronization Using Synchronized Methods The synchronized Statement Interthread Communication Deadlock Suspending, Resuming, and Stopping Threads Obtaining a Thread’s State Using a Factory Method to Create and Start a Thread Using Multithreading Chapter 12 Enumerations, Autoboxing, and Annotations Enumerations Enumeration Fundamentals The values( ) and valueOf( ) Methods Java Enumerations Are Class Types Enumerations Inherit Enum Another Enumeration Example Type Wrappers
Character Boolean The Numeric Type Wrappers Autoboxing Autoboxing and Methods Autoboxing/Unboxing Occurs in Expressions Autoboxing/Unboxing Boolean and Character Values Autoboxing/Unboxing Helps Prevent Errors A Word of Warning Annotations Annotation Basics Specifying a Retention Policy Obtaining Annotations at Run Time by Use of Reflection The AnnotatedElement Interface Using Default Values Marker Annotations Single-Member Annotations The Built-In Annotations Type Annotations Repeating Annotations Some Restrictions Chapter 13 I/O, Try-with-Resources, and Other Topics I/O Basics Streams Byte Streams and Character Streams The Predefined Streams Reading Console Input Reading Characters Reading Strings Writing Console Output The PrintWriter Class
Reading and Writing Files Automatically Closing a File The transient and volatile Modifiers Using instanceof strictfp Native Methods Using assert Assertion Enabling and Disabling Options Static Import Invoking Overloaded Constructors Through this( ) A Word About Compact API Profiles Chapter 14 Generics What Are Generics? A Simple Generics Example Generics Work Only with Reference Types Generic Types Differ Based on Their Type Arguments How Generics Improve Type Safety A Generic Class with Two Type Parameters The General Form of a Generic Class Bounded Types Using Wildcard Arguments Bounded Wildcards Creating a Generic Method Generic Constructors Generic Interfaces Raw Types and Legacy Code Generic Class Hierarchies Using a Generic Superclass A Generic Subclass Run-Time Type Comparisons Within a Generic Hierarchy Casting
Overriding Methods in a Generic Class Type Inference with Generics Local Variable Type Inference and Generics Erasure Bridge Methods Ambiguity Errors Some Generic Restrictions Type Parameters Can’t Be Instantiated Restrictions on Static Members Generic Array Restrictions Generic Exception Restriction Chapter 15 Lambda Expressions Introducing Lambda Expressions Lambda Expression Fundamentals Functional Interfaces Some Lambda Expression Examples Block Lambda Expressions Generic Functional Interfaces Passing Lambda Expressions as Arguments Lambda Expressions and Exceptions Lambda Expressions and Variable Capture Method References Method References to static Methods Method References to Instance Methods Method References with Generics Constructor References Predefined Functional Interfaces Chapter 16 Modules Module Basics A Simple Module Example Compile and Run the First Module Example
A Closer Look at requires and exports java.base and the Platform Modules Legacy Code and the Unnamed Module Exporting to a Specific Module Using requires transitive Use Services Service and Service Provider Basics The Service-Based Keywords A Module-Based Service Example Module Graphs Three Specialized Module Features Open Modules The opens Statement requires static Introducing jlink and Module JAR Files Linking Files in an Exploded Directory Linking Modular JAR Files JMOD Files A Brief Word About Layers and Automatic Modules Final Thoughts on Modules
Part II The Java Library Chapter 17 String Handling The String Constructors String Length Special String Operations String Literals String Concatenation String Concatenation with Other Data Types String Conversion and toString( ) Character Extraction
charAt( ) getChars( ) getBytes( ) toCharArray( ) String Comparison equals( ) and equalsIgnoreCase( ) regionMatches( ) startsWith( ) and endsWith( ) equals( ) Versus == compareTo( ) Searching Strings Modifying a String substring( ) concat( ) replace( ) trim( ) and strip( ) Data Conversion Using valueOf( ) Changing the Case of Characters Within a String Joining Strings Additional String Methods StringBuffer StringBuffer Constructors length( ) and capacity( ) ensureCapacity( ) setLength( ) charAt( ) and setCharAt( ) getChars( ) append( ) insert( ) reverse( ) delete( ) and deleteCharAt( )
replace( ) substring( ) Additional StringBuffer Methods StringBuilder Chapter 18 Exploring java.lang Primitive Type Wrappers Number Double and Float Understanding isInfinite( ) and isNaN( ) Byte, Short, Integer, and Long Character Additions to Character for Unicode Code Point Support Boolean Void Process Runtime Memory Management Executing Other Programs Runtime.Version ProcessBuilder System Using currentTimeMillis( ) to Time Program Execution Using arraycopy( ) Environment Properties System.Logger and System.LoggerFinder Object Using clone( ) and the Cloneable Interface Class ClassLoader Math Trigonometric Functions
Exponential Functions Rounding Functions Miscellaneous Math Methods StrictMath Compiler Thread, ThreadGroup, and Runnable The Runnable Interface Thread ThreadGroup ThreadLocal and InheritableThreadLocal Package Module ModuleLayer RuntimePermission Throwable SecurityManager StackTraceElement StackWalker and StackWalker.StackFrame Enum ClassValue The CharSequence Interface The Comparable Interface The Appendable Interface The Iterable Interface The Readable Interface The AutoCloseable Interface The Thread.UncaughtExceptionHandler Interface The java.lang Subpackages java.lang.annotation java.lang.instrument java.lang.invoke
java.lang.management java.lang.module java.lang.ref java.lang.reflect Chapter 19 java.util Part 1: The Collections Framework Collections Overview The Collection Interfaces The Collection Interface The List Interface The Set Interface The SortedSet Interface The NavigableSet Interface The Queue Interface The Deque Interface The Collection Classes The ArrayList Class The LinkedList Class The HashSet Class The LinkedHashSet Class The TreeSet Class The PriorityQueue Class The ArrayDeque Class The EnumSet Class Accessing a Collection via an Iterator Using an Iterator The For-Each Alternative to Iterators Spliterators Storing User-Defined Classes in Collections The RandomAccess Interface Working with Maps The Map Interfaces
The Map Classes Comparators Using a Comparator The Collection Algorithms Arrays The Legacy Classes and Interfaces The Enumeration Interface Vector Stack Dictionary Hashtable Properties Using store( ) and load( ) Parting Thoughts on Collections Chapter 20 java.util Part 2: More Utility Classes StringTokenizer BitSet Optional, OptionalDouble, OptionalInt, and OptionalLong Date Calendar GregorianCalendar TimeZone SimpleTimeZone Locale Random Timer and TimerTask Currency Formatter The Formatter Constructors The Formatter Methods Formatting Basics
Formatting Strings and Characters Formatting Numbers Formatting Time and Date The %n and %% Specifiers Specifying a Minimum Field Width Specifying Precision Using the Format Flags Justifying Output The Space, +, 0, and ( Flags The Comma Flag The # Flag The Uppercase Option Using an Argument Index Closing a Formatter The Java printf( ) Connection Scanner The Scanner Constructors Scanning Basics Some Scanner Examples Setting Delimiters Other Scanner Features The ResourceBundle, ListResourceBundle, and PropertyResourceBundle Classes Miscellaneous Utility Classes and Interfaces The java.util Subpackages java.util.concurrent, java.util.concurrent.atomic, and java.util.concurrent.locks java.util.function java.util.jar java.util.logging java.util.prefs
java.util.regex java.util.spi java.util.stream java.util.zip Chapter 21 Input/Output: Exploring java.io The I/O Classes and Interfaces File Directories Using FilenameFilter The listFiles( ) Alternative Creating Directories The AutoCloseable, Closeable, and Flushable Interfaces I/O Exceptions Two Ways to Close a Stream The Stream Classes The Byte Streams InputStream OutputStream FileInputStream FileOutputStream ByteArrayInputStream ByteArrayOutputStream Filtered Byte Streams Buffered Byte Streams SequenceInputStream PrintStream DataOutputStream and DataInputStream RandomAccessFile The Character Streams Reader Writer
FileReader FileWriter CharArrayReader CharArrayWriter BufferedReader BufferedWriter PushbackReader PrintWriter The Console Class Serialization Serializable Externalizable ObjectOutput ObjectOutputStream ObjectInput ObjectInputStream A Serialization Example Stream Benefits Chapter 22 Exploring NIO The NIO Classes NIO Fundamentals Buffers Channels Charsets and Selectors Enhancements Added by NIO.2 The Path Interface The Files Class The Paths Class The File Attribute Interfaces The FileSystem, FileSystems, and FileStore Classes Using the NIO System
Use NIO for Channel-Based I/O Use NIO for Stream-Based I/O Use NIO for Path and File System Operations Chapter 23 Networking Networking Basics The java.net Networking Classes and Interfaces InetAddress Factory Methods Instance Methods Inet4Address and Inet6Address TCP/IP Client Sockets URL URLConnection HttpURLConnection The URI Class Cookies TCP/IP Server Sockets Datagrams DatagramSocket DatagramPacket A Datagram Example Introducing java.net.http Three Key Elements A Simple HTTP Client Example Things to Explore in java.net.http Chapter 24 Event Handling Two Event Handling Mechanisms The Delegation Event Model Events Event Sources Event Listeners
Event Classes The ActionEvent Class The AdjustmentEvent Class The ComponentEvent Class The ContainerEvent Class The FocusEvent Class The InputEvent Class The ItemEvent Class The KeyEvent Class The MouseEvent Class The MouseWheelEvent Class The TextEvent Class The WindowEvent Class Sources of Events Event Listener Interfaces The ActionListener Interface The AdjustmentListener Interface The ComponentListener Interface The ContainerListener Interface The FocusListener Interface The ItemListener Interface The KeyListener Interface The MouseListener Interface The MouseMotionListener Interface The MouseWheelListener Interface The TextListener Interface The WindowFocusListener Interface The WindowListener Interface Using the Delegation Event Model Some Key AWT GUI Concepts Handling Mouse Events
Handling Keyboard Events Adapter Classes Inner Classes Anonymous Inner Classes Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text AWT Classes Window Fundamentals Component Container Panel Window Frame Canvas Working with Frame Windows Setting the Window’s Dimensions Hiding and Showing a Window Setting a Window’s Title Closing a Frame Window The paint( ) Method Displaying a String Setting the Foreground and Background Colors Requesting Repainting Creating a Frame-Based Application Introducing Graphics Drawing Lines Drawing Rectangles Drawing Ellipses and Circles Drawing Arcs Drawing Polygons Demonstrating the Drawing Methods
Sizing Graphics Working with Color Color Methods Setting the Current Graphics Color A Color Demonstration Program Setting the Paint Mode Working with Fonts Determining the Available Fonts Creating and Selecting a Font Obtaining Font Information Managing Text Output Using FontMetrics Chapter 26 Using AWT Controls, Layout Managers, and Menus AWT Control Fundamentals Adding and Removing Controls Responding to Controls The HeadlessException Labels Using Buttons Handling Buttons Applying Check Boxes Handling Check Boxes CheckboxGroup Choice Controls Handling Choice Lists Using Lists Handling Lists Managing Scroll Bars Handling Scroll Bars Using a TextField Handling a TextField Using a TextArea
Understanding Layout Managers FlowLayout BorderLayout Using Insets GridLayout CardLayout GridBagLayout Menu Bars and Menus Dialog Boxes A Word About Overriding paint( ) Chapter 27 Images File Formats Image Fundamentals: Creating, Loading, and Displaying Creating an Image Object Loading an Image Displaying an Image Double Buffering ImageProducer MemoryImageSource ImageConsumer PixelGrabber ImageFilter CropImageFilter RGBImageFilter Additional Imaging Classes Chapter 28 The Concurrency Utilities The Concurrent API Packages java.util.concurrent java.util.concurrent.atomic java.util.concurrent.locks Using Synchronization Objects
Semaphore CountDownLatch CyclicBarrier Exchanger Phaser Using an Executor A Simple Executor Example Using Callable and Future The TimeUnit Enumeration The Concurrent Collections Locks Atomic Operations Parallel Programming via the Fork/Join Framework The Main Fork/Join Classes The Divide-and-Conquer Strategy A Simple First Fork/Join Example Understanding the Impact of the Level of Parallelism An Example that Uses RecursiveTask Executing a Task Asynchronously Cancelling a Task Determining a Task’s Completion Status Restarting a Task Things to Explore Some Fork/Join Tips The Concurrency Utilities Versus Java’s Traditional Approach Chapter 29 The Stream API Stream Basics Stream Interfaces How to Obtain a Stream A Simple Stream Example Reduction Operations
Using Parallel Streams Mapping Collecting Iterators and Streams Use an Iterator with a Stream Use Spliterator More to Explore in the Stream API Chapter 30 Regular Expressions and Other Packages Regular Expression Processing Pattern Matcher Regular Expression Syntax Demonstrating Pattern Matching Two Pattern-Matching Options Exploring Regular Expressions Reflection Remote Method Invocation (RMI) A Simple Client/Server Application Using RMI Formatting Date and Time with java.text DateFormat Class SimpleDateFormat Class The java.time Time and Date API Time and Date Fundamentals Formatting Date and Time Parsing Date and Time Strings Other Things to Explore in java.time
Part III Introducing GUI Programming with Swing Chapter 31 Introducing Swing The Origins of Swing Swing Is Built on the AWT
Two Key Swing Features Swing Components Are Lightweight Swing Supports a Pluggable Look and Feel The MVC Connection Components and Containers Components Containers The Top-Level Container Panes The Swing Packages A Simple Swing Application Event Handling Painting in Swing Painting Fundamentals Compute the Paintable Area A Paint Example Chapter 32 Exploring Swing JLabel and ImageIcon JTextField The Swing Buttons JButton JToggleButton Check Boxes Radio Buttons JTabbedPane JScrollPane JList JComboBox Trees JTable Chapter 33 Introducing Swing Menus Menu Basics
An Overview of JMenuBar, JMenu, and JMenuItem JMenuBar JMenu JMenuItem Create a Main Menu Add Mnemonics and Accelerators to Menu Items Add Images and Tooltips to Menu Items Use JRadioButtonMenuItem and JCheckBoxMenuItem Create a Popup Menu Create a Toolbar Use Actions Put the Entire MenuDemo Program Together Continuing Your Exploration of Swing
Part IV Applying Java Chapter 34 Java Beans What Is a Java Bean? Advantages of Beans Introspection Design Patterns for Properties Design Patterns for Events Methods and Design Patterns Using the BeanInfo Interface Bound and Constrained Properties Persistence Customizers The JavaBeans API Introspector PropertyDescriptor EventSetDescriptor MethodDescriptor
A Bean Example Chapter 35 Introducing Servlets Background The Life Cycle of a Servlet Servlet Development Options Using Tomcat A Simple Servlet Create and Compile the Servlet Source Code Start Tomcat Start a Web Browser and Request the Servlet The Servlet API The javax.servlet Package The Servlet Interface The ServletConfig Interface The ServletContext Interface The ServletRequest Interface The ServletResponse Interface The GenericServlet Class The ServletInputStream Class The ServletOutputStream Class The Servlet Exception Classes Reading Servlet Parameters The javax.servlet.http Package The HttpServletRequest Interface The HttpServletResponse Interface The HttpSession Interface The Cookie Class The HttpServlet Class Handling HTTP Requests and Responses Handling HTTP GET Requests Handling HTTP POST Requests
Using Cookies Session Tracking
Part V Appendixes Appendix A Using Java’s Documentation Comments The javadoc Tags @author @deprecated @exception @hidden @param @provides @return @see @serial @serialData @serialField @since @throws @uses @version The General Form of a Documentation Comment
What javadoc Outputs An Example that Uses Documentation Comments Appendix B Introducing JShell JShell Basics List, Edit, and Rerun Code Add a Method Create a Class Use an Interface Evaluate Expressions and Use Built-in Variables Importing Packages Exceptions Some More JShell Commands Exploring JShell Further Appendix C Compile and Run Simple Single-File Programs in One Step Index
ava is one of the world’s most important and widely used computer languages. Furthermore, it has held that distinction for many years. Unlike some other computer languages whose influence has waned with the passage of time, Java’s has grown stronger. Java leapt to the forefront of Internet programming with its first release. Each subsequent version has solidified that position. Today, it is still the first and best choice for developing web-based applications. It is also a powerful, general-purpose programming language suitable for a wide variety of purposes. Simply put: much of the modern world runs on Java code. Java really is that important. A key reason for Java’s success is its agility. Since its original 1.0 release, Java has continually adapted to changes in the programming environment and to changes in the way that programmers program. Most importantly, it has not just followed the trends, it has helped create them. Java’s ability to accommodate the fast rate of change in the computing world is a crucial part of why it has been and continues to be so successful. Since this book was first published in 1996, it has gone through several editions, each reflecting the ongoing evolution of Java. This is the eleventh edition, and it has been updated for Java SE 11 (JDK 11). As a result, this edition of the book contains a substantial amount of new material, updates, and changes. Of special interest are the discussions of two key features that have been added to Java since the previous edition of this book. The first is local variable type inference because it streamlines some types of local variable declarations. To support local variable type inference, the context-sensitive, reserved type name var has been added to the language. The second key new Java feature is the reworking of the version number to reflect what is expected to be a faster release cycle, which started with JDK 10. As explained in Chapter 1, Java feature releases are now anticipated to take place every six months. This is important because it is now possible for new features to be added to Java at a more rapid pace than in the past. Although introduced in the previous edition of this book, there are two recently added Java features that are still having a strong impact on Java programmers. The first is modules, which enable you to specify the relationships and dependencies of the code that comprises an application. The addition of
modules by JDK 9 represents one of the most profound changes ever made to the Java language. For example, it resulted in the addition of 10 context-sensitive keywords. Modules also significantly impacted the Java API library because its packages are now organized into modules. Furthermore, to support modules, new tools have been added, existing tools have been updated, and a new file format has been defined. Because of their importance, the entirety of Chapter 16 is devoted to modules. The second recently added feature is JShell. JShell is a tool that offers an interactive environment in which it is easy to experiment with code snippets without having to write an entire program. Both beginners and experienced professionals will find it quite useful. An introduction to JShell is found in Appendix B.
A Book for All Programmers This book is for all programmers, whether you are a novice or an experienced pro. The beginner will find its carefully paced discussions and many examples especially helpful. Its in-depth coverage of Java’s more advanced features and libraries will appeal to the pro. For both, it offers a lasting resource and handy reference.
What’s Inside This book is a comprehensive guide to the Java language, describing its syntax, keywords, and fundamental programming principles. Significant portions of the Java API library are also examined. The book is divided into four parts, each focusing on a different aspect of the Java programming environment. Part I presents an in-depth tutorial of the Java language. It begins with the basics, including such things as data types, operators, control statements, and classes. It then moves on to inheritance, packages, interfaces, exception handling, and multithreading. Next, it describes annotations, enumerations, autoboxing, generics, and lambda expressions. I/O is also introduced. The final chapter in Part I covers modules. Part II examines key aspects of Java’s standard API library. Topics include strings, I/O, networking, the standard utilities, the Collections Framework, the AWT, event handling, imaging, concurrency (including the Fork/Join Framework), regular expressions, and the stream library. Part III offers three chapters that introduce Swing.
Part IV contains two chapters that show examples of Java in action. The first discusses Java Beans. The second presents an introduction to servlets.
Special Thanks I want to give special thanks to Patrick Naughton, Joe O’Neil, and Danny Coward. Patrick Naughton was one of the creators of the Java language. He also helped write the first edition of this book. For example, among many other contributions, much of the material in Chapters 21, 23, and 27 was initially provided by Patrick. His insights, expertise, and energy contributed greatly to the success of that book. During the preparation of the second and third editions of this book, Joe O’Neil provided initial drafts for the material now found in Chapters 30, 32, 34, and 35 of this edition. Joe helped on several of my books, and his input has always been top-notch. Danny Coward is the technical editor for this edition of the book. Danny has worked on several of my books, and his advice, insights, and suggestions have always been of great value and much appreciated. HERBERT SCHILDT
For Further Study Java: The Complete Reference is your gateway to the Herb Schildt series of Java programming books. Here are others that you will find of interest: Herb Schildt’s Java Programming Cookbook Java: A Beginner’s Guide Introducing JavaFX 8 Programming Swing: A Beginner’s Guide The Art of Java
The Java Language CHAPTER 1 The History and Evolution of Java CHAPTER 2 An Overview of Java CHAPTER 3 Data Types, Variables, and Arrays CHAPTER 4 Operators CHAPTER 5 Control Statements CHAPTER 6 Introducing Classes CHAPTER 7 A Closer Look at Methods and Classes CHAPTER 8 Inheritance CHAPTER 9 Packages and Interfaces CHAPTER 10 Exception Handling CHAPTER 11 Multithreaded Programming CHAPTER 12 Enumerations, Autoboxing, and Annotations CHAPTER 13
I/O, Try-with-Resources, and Other Topics CHAPTER 14 Generics CHAPTER 15 Lambda Expressions CHAPTER 16 Modules
The History and Evolution of Java To fully understand Java, one must understand the reasons behind its creation, the forces that shaped it, and the legacy that it inherits. Like the successful computer languages that came before, Java is a blend of the best elements of its rich heritage combined with the innovative concepts required by its unique mission. While the remaining chapters of this book describe the practical aspects of Java—including its syntax, key libraries, and applications—this chapter explains how and why Java came about, what makes it so important, and how it has evolved over the years. Although Java has become inseparably linked with the online environment of the Internet, it is important to remember that Java is first and foremost a programming language. Computer language innovation and development occur for two fundamental reasons: • To adapt to changing environments and uses • To implement refinements and improvements in the art of programming As you will see, the development of Java was driven by both elements in nearly equal measure.
Java’s Lineage Java is related to C++, which is a direct descendant of C. Much of the character of Java is inherited from these two languages. From C, Java derives its syntax. Many of Java’s object-oriented features were influenced by C++. In fact, several of Java’s defining characteristics come from—or are responses to—its predecessors. Moreover, the creation of Java was deeply rooted in the process of refinement and adaptation that has been occurring in computer programming languages for the past several decades. For these reasons, this section reviews the sequence of events and forces that led to Java. As you will see, each innovation in language design was driven by the need to solve a fundamental problem that the preceding languages could not solve. Java is no exception.
The Birth of Modern Programming: C The C language shook the computer world. Its impact should not be underestimated, because it fundamentally changed the way programming was approached and thought about. The creation of C was a direct result of the need for a structured, efficient, high-level language that could replace assembly code when creating systems programs. As you may know, when a computer language is designed, trade-offs are often made, such as the following: • Ease-of-use versus power • Safety versus efficiency • Rigidity versus extensibility Prior to C, programmers usually had to choose between languages that optimized one set of traits or the other. For example, although FORTRAN could be used to write fairly efficient programs for scientific applications, it was not very good for system code. And while BASIC was easy to learn, it wasn’t very powerful, and its lack of structure made its usefulness questionable for large programs. Assembly language can be used to produce highly efficient programs, but it is not easy to learn or use effectively. Further, debugging assembly code can be quite difficult. Another compounding problem was that early computer languages such as BASIC, COBOL, and FORTRAN were not designed around structured principles. Instead, they relied upon the GOTO as a primary means of program control. As a result, programs written using these languages tended to produce “spaghetti code”—a mass of tangled jumps and conditional branches that make a program virtually impossible to understand. While languages like Pascal are structured, they were not designed for efficiency, and failed to include certain features necessary to make them applicable to a wide range of programs. (Specifically, given the standard dialects of Pascal available at the time, it was not practical to consider using Pascal for systems-level code.) So, just prior to the invention of C, no one language had reconciled the conflicting attributes that had dogged earlier efforts. Yet the need for such a language was pressing. By the early 1970s, the computer revolution was beginning to take hold, and the demand for software was rapidly outpacing programmers’ ability to produce it. A great deal of effort was being expended in academic circles in an attempt to create a better computer language. But, and perhaps most importantly, a secondary force was beginning to be felt. Computer hardware was finally becoming common enough that a critical mass was being
reached. No longer were computers kept behind locked doors. For the first time, programmers were gaining virtually unlimited access to their machines. This allowed the freedom to experiment. It also allowed programmers to begin to create their own tools. On the eve of C’s creation, the stage was set for a quantum leap forward in computer languages. Invented and first implemented by Dennis Ritchie on a DEC PDP-11 running the UNIX operating system, C was the result of a development process that started with an older language called BCPL, developed by Martin Richards. BCPL influenced a language called B, invented by Ken Thompson, which led to the development of C in the 1970s. For many years, the de facto standard for C was the one supplied with the UNIX operating system and described in The C Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-Hall, 1978). C was formally standardized in December 1989, when the American National Standards Institute (ANSI) standard for C was adopted. The creation of C is considered by many to have marked the beginning of the modern age of computer languages. It successfully synthesized the conflicting attributes that had so troubled earlier languages. The result was a powerful, efficient, structured language that was relatively easy to learn. It also included one other, nearly intangible aspect: it was a programmer’s language. Prior to the invention of C, computer languages were generally designed either as academic exercises or by bureaucratic committees. C is different. It was designed, implemented, and developed by real, working programmers, reflecting the way that they approached the job of programming. Its features were honed, tested, thought about, and rethought by the people who actually used the language. The result was a language that programmers liked to use. Indeed, C quickly attracted many followers who had a near-religious zeal for it. As such, it found wide and rapid acceptance in the programmer community. In short, C is a language designed by and for programmers. As you will see, Java inherited this legacy.
C++: The Next Step During the late 1970s and early 1980s, C became the dominant computer programming language, and it is still widely used today. Since C is a successful and useful language, you might ask why a need for something else existed. The answer is complexity. Throughout the history of programming, the increasing complexity of programs has driven the need for better ways to manage that complexity. C++ is a response to that need. To better understand why managing program complexity is fundamental to the creation of C++, consider the
following. Approaches to programming have changed dramatically since the invention of the computer. For example, when computers were first invented, programming was done by manually toggling in the binary machine instructions by use of the front panel. As long as programs were just a few hundred instructions long, this approach worked. As programs grew, assembly language was invented so that a programmer could deal with larger, increasingly complex programs by using symbolic representations of the machine instructions. As programs continued to grow, high-level languages were introduced that gave the programmer more tools with which to handle complexity. The first widespread language was, of course, FORTRAN. While FORTRAN was an impressive first step, at the time it was hardly a language that encouraged clear and easy-to-understand programs. The 1960s gave birth to structured programming. This is the method of programming championed by languages such as C. The use of structured languages enabled programmers to write, for the first time, moderately complex programs fairly easily. However, even with structured programming methods, once a project reaches a certain size, its complexity exceeds what a programmer can manage. By the early 1980s, many projects were pushing the structured approach past its limits. To solve this problem, a new way to program was invented, called object-oriented programming (OOP). Object-oriented programming is discussed in detail later in this book, but here is a brief definition: OOP is a programming methodology that helps organize complex programs through the use of inheritance, encapsulation, and polymorphism. In the final analysis, although C is one of the world’s great programming languages, there is a limit to its ability to handle complexity. Once the size of a program exceeds a certain point, it becomes so complex that it is difficult to grasp as a totality. While the precise size at which this occurs differs, depending upon both the nature of the program and the programmer, there is always a threshold at which a program becomes unmanageable. C++ added features that enabled this threshold to be broken, allowing programmers to comprehend and manage larger programs. C++ was invented by Bjarne Stroustrup in 1979, while he was working at Bell Laboratories in Murray Hill, New Jersey. Stroustrup initially called the new language “C with Classes.” However, in 1983, the name was changed to C++. C++ extends C by adding object-oriented features. Because C++ is built on the foundation of C, it includes all of C’s features, attributes, and benefits. This is a crucial reason for the success of C++ as a language. The invention of C++ was
not an attempt to create a completely new programming language. Instead, it was an enhancement to an already highly successful one.
The Stage Is Set for Java By the end of the 1980s and the early 1990s, object-oriented programming using C++ took hold. Indeed, for a brief moment it seemed as if programmers had finally found the perfect language. Because C++ blended the high efficiency and stylistic elements of C with the object-oriented paradigm, it was a language that could be used to create a wide range of programs. However, just as in the past, forces were brewing that would, once again, drive computer language evolution forward. Within a few years, the World Wide Web and the Internet would reach critical mass. This event would precipitate another revolution in programming.
The Creation of Java Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first working version. This language was initially called “Oak,” but was renamed “Java” in 1995. Between the initial implementation of Oak in the fall of 1992 and the public announcement of Java in the spring of 1995, many more people contributed to the design and evolution of the language. Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin, and Tim Lindholm were key contributors to the maturing of the original prototype. Somewhat surprisingly, the original impetus for Java was not the Internet! Instead, the primary motivation was the need for a platform-independent (that is, architecture-neutral) language that could be used to create software to be embedded in various consumer electronic devices, such as microwave ovens and remote controls. As you can probably guess, many different types of CPUs are used as controllers. The trouble with C and C++ (and most other languages) is that they are designed to be compiled for a specific target. Although it is possible to compile a C++ program for just about any type of CPU, to do so requires a full C++ compiler targeted for that CPU. The problem is that compilers are expensive and time-consuming to create. An easier—and more cost-efficient— solution was needed. In an attempt to find such a solution, Gosling and others began work on a portable, platform-independent language that could be used to produce code that would run on a variety of CPUs under differing environments. This effort ultimately led to the creation of Java.
About the time that the details of Java were being worked out, a second, and ultimately more important, factor was emerging that would play a crucial role in the future of Java. This second force was, of course, the World Wide Web. Had the Web not taken shape at about the same time that Java was being implemented, Java might have remained a useful but obscure language for programming consumer electronics. However, with the emergence of the World Wide Web, Java was propelled to the forefront of computer language design, because the Web, too, demanded portable programs. Most programmers learn early in their careers that portable programs are as elusive as they are desirable. While the quest for a way to create efficient, portable (platform-independent) programs is nearly as old as the discipline of programming itself, it had taken a back seat to other, more pressing problems. Further, because (at that time) much of the computer world had divided itself into the three competing camps of Intel, Macintosh, and UNIX, most programmers stayed within their fortified boundaries, and the urgent need for portable code was reduced. However, with the advent of the Internet and the Web, the old problem of portability returned with a vengeance. After all, the Internet consists of a diverse, distributed universe populated with various types of computers, operating systems, and CPUs. Even though many kinds of platforms are attached to the Internet, users would like them all to be able to run the same program. What was once an irritating but low-priority problem had become a high-profile necessity. By 1993, it became obvious to members of the Java design team that the problems of portability frequently encountered when creating code for embedded controllers are also found when attempting to create code for the Internet. In fact, the same problem that Java was initially designed to solve on a small scale could also be applied to the Internet on a large scale. This realization caused the focus of Java to switch from consumer electronics to Internet programming. So, while the desire for an architecture-neutral programming language provided the initial spark, the Internet ultimately led to Java’s largescale success. As mentioned earlier, Java derives much of its character from C and C++. This is by intent. The Java designers knew that using the familiar syntax of C and echoing the object-oriented features of C++ would make their language appealing to the legions of experienced C/C++ programmers. In addition to the surface similarities, Java shares some of the other attributes that helped make C and C++ successful. First, Java was designed, tested, and refined by real, working programmers. It is a language grounded in the needs and experiences of
the people who devised it. Thus, Java is a programmer’s language. Second, Java is cohesive and logically consistent. Third, except for those constraints imposed by the Internet environment, Java gives you, the programmer, full control. If you program well, your programs reflect it. If you program poorly, your programs reflect that, too. Put differently, Java is not a language with training wheels. It is a language for professional programmers. Because of the similarities between Java and C++, it is tempting to think of Java as simply the “Internet version of C++.” However, to do so would be a large mistake. Java has significant practical and philosophical differences. While it is true that Java was influenced by C++, it is not an enhanced version of C++. For example, Java is neither upwardly nor downwardly compatible with C++. Of course, the similarities with C++ are significant, and if you are a C++ programmer, then you will feel right at home with Java. One other point: Java was not designed to replace C++. Java was designed to solve a certain set of problems. C++ was designed to solve a different set of problems. Both will coexist for many years to come. As mentioned at the start of this chapter, computer languages evolve for two reasons: to adapt to changes in environment and to implement advances in the art of programming. The environmental change that prompted Java was the need for platform-independent programs destined for distribution on the Internet. However, Java also embodies changes in the way that people approach the writing of programs. For example, Java enhanced and refined the object-oriented paradigm used by C++, added integrated support for multithreading, and provided a library that simplified Internet access. In the final analysis, though, it was not the individual features of Java that made it so remarkable. Rather, it was the language as a whole. Java was the perfect response to the demands of the then newly emerging, highly distributed computing universe. Java was to Internet programming what C was to system programming: a revolutionary force that changed the world.
The C# Connection The reach and power of Java continues to be felt in the world of computer language development. Many of its innovative features, constructs, and concepts have become part of the baseline for any new language. The success of Java is simply too important to ignore. Perhaps the most important example of Java’s influence is C#. Created by Microsoft to support the .NET Framework, C# is closely related to Java. For
example, both share the same general syntax, support distributed programming, and utilize the same object model. There are, of course, differences between Java and C#, but the overall “look and feel” of these languages is very similar. This “cross-pollination” from Java to C# is the strongest testimonial to date that Java redefined the way we think about and use a computer language.
How Java Impacted the Internet The Internet helped catapult Java to the forefront of programming, and Java, in turn, had a profound effect on the Internet. In addition to simplifying web programming in general, Java innovated a new type of networked program called the applet that changed the way the online world thought about content. Java also addressed some of the thorniest issues associated with the Internet: portability and security. Let’s look more closely at each of these.
Java Applets At the time of Java’s creation, one of its most exciting features was the applet. An applet is a special kind of Java program that is designed to be transmitted over the Internet and automatically executed inside a Java-compatible web browser. If the user clicks a link that contains an applet, the applet will download and run in the browser. Applets were intended to be small programs. They were typically used to display data provided by the server, handle user input, or provide simple functions, such as a loan calculator, that execute locally, rather than on the server. In essence, the applet allowed some functionality to be moved from the server to the client. The creation of the applet was important because, at the time, it expanded the universe of objects that could move about freely in cyberspace. In general, there are two very broad categories of objects that are transmitted between the server and the client: passive information and dynamic, active programs. For example, when you read your e-mail, you are viewing passive data. Even when you download a program, the program’s code is still only passive data until you execute it. By contrast, the applet is a dynamic, self-executing program. Such a program is an active agent on the client computer, yet it is initiated by the server. In the early days of Java, applets were a crucial part of Java programming. They illustrated the power and benefits of Java, added an exciting dimension to web pages, and enabled programmers to explore the full extent of what was possible with Java. Although it is likely that there are still applets in use today,
over time they became less important. For reasons that will be explained, beginning with JDK 9, the phase-out of applets began, with applet support being removed by JDK 11.
Security As desirable as dynamic, networked programs are, they can also present serious problems in the areas of security and portability. Obviously, a program that downloads and executes on the client computer must be prevented from doing harm. It must also be able to run in a variety of different environments and under different operating systems. As you will see, Java solved these problems in an effective and elegant way. Let’s look a bit more closely at each, beginning with security. As you are likely aware, every time you download a “normal” program, you are taking a risk, because the code you are downloading might contain a virus, Trojan horse, or other harmful code. At the core of the problem is the fact that malicious code can cause its damage because it has gained unauthorized access to system resources. For example, a virus program might gather private information, such as credit card numbers, bank account balances, and passwords, by searching the contents of your computer’s local file system. In order for Java to enable programs to be safely downloaded and executed on the client computer, it was necessary to prevent them from launching such an attack. Java achieved this protection by enabling you to confine an application to the Java execution environment and prevent it from accessing other parts of the computer. (You will see how this is accomplished shortly.) The ability to download programs with a degree of confidence that no harm will be done may have been the single most innovative aspect of Java.
Portability Portability is a major aspect of the Internet because there are many different types of computers and operating systems connected to it. If a Java program were to be run on virtually any computer connected to the Internet, there needed to be some way to enable that program to execute on different systems. In other words, a mechanism that allows the same application to be downloaded and executed by a wide variety of CPUs, operating systems, and browsers is required. It is not practical to have different versions of the application for different computers. The same application code must work on all computers.
Therefore, some means of generating portable executable code was needed. As you will soon see, the same mechanism that helps ensure security also helps create portability.
Java’s Magic: The Bytecode The key that allowed Java to solve both the security and the portability problems just described is that the output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is a highly optimized set of instructions designed to be executed by what is called the Java Virtual Machine (JVM), which is part of the Java Runtime Environment (JRE). In essence, the original JVM was designed as an interpreter for bytecode. This may come as a bit of a surprise since many modern languages are designed to be compiled into executable code because of performance concerns. However, the fact that a Java program is executed by the JVM helps solve the major problems associated with web-based programs. Here is why. Translating a Java program into bytecode makes it much easier to run a program in a wide variety of environments because only the JVM needs to be implemented for each platform. Once a JRE exists for a given system, any Java program can run on it. Remember, although the details of the JVM will differ from platform to platform, all understand the same Java bytecode. If a Java program were compiled to native code, then different versions of the same program would have to exist for each type of CPU connected to the Internet. This is, of course, not a feasible solution. Thus, the execution of bytecode by the JVM is the easiest way to create truly portable programs. The fact that a Java program is executed by the JVM also helps to make it secure. Because the JVM is in control, it manages program execution. Thus, it is possible for the JVM to create a restricted execution environment, called the sandbox, that contains the program, preventing unrestricted access to the machine. Safety is also enhanced by certain restrictions that exist in the Java language. In general, when a program is compiled to an intermediate form and then interpreted by a virtual machine, it runs slower than it would run if compiled to executable code. However, with Java, the differential between the two is not so great. Because bytecode has been highly optimized, the use of bytecode enables the JVM to execute programs much faster than you might expect. Although Java was designed as an interpreted language, there is nothing about Java that prevents on-the-fly compilation of bytecode into native code in
order to boost performance. For this reason, the HotSpot technology was introduced not long after Java’s initial release. HotSpot provides a Just-In-Time (JIT) compiler for bytecode. When a JIT compiler is part of the JVM, selected portions of bytecode are compiled into executable code in real time, on a pieceby-piece, demand basis. It is important to understand that an entire Java program is not compiled into executable code all at once. Instead, a JIT compiler compiles code as it is needed, during execution. Furthermore, not all sequences of bytecode are compiled—only those that will benefit from compilation. The remaining code is simply interpreted. However, the just-in-time approach still yields a significant performance boost. Even when dynamic compilation is applied to bytecode, the portability and safety features still apply, because the JVM is still in charge of the execution environment. One other point: Beginning with JDK 9, some Java environments will also support an ahead-of-time compiler that can be used to compile bytecode into native code prior to execution by the JVM, rather than on-the-fly. Ahead-of-time compilation is a specialized feature, and it does not replace Java’s traditional approach just described. Because of the highly specialized nature of ahead-oftime compilation, it is not discussed further in this book.
Moving Beyond Applets At the time of this writing, it has been more than two decades since Java’s original release. Over those years, many changes have taken place. At the time of Java’s creation, the Internet was a new and exciting innovation; web browsers were undergoing rapid development and refinement; the modern form of the smart phone had not yet been invented; and the near ubiquitous use of computers was still a few years off. As you would expect, Java has also changed and so, too, has the way that Java is used. Perhaps nothing illustrates the ongoing evolution of Java better than the applet. As explained previously, in the early years of Java, applets were a crucial part of Java programming. They not only added excitement to a web page, they were also a highly visible part of Java, which added to its charisma. However, applets rely on a Java browser plug-in. Thus, for an applet to work, the browser must support it. Recently, support for the Java browser plug-in has been waning. Simply put, without browser support, applets are not viable. Because of this, beginning with JDK 9, the phase-out of applets was begun, with support for applets being deprecated. In the language of Java, deprecated means that a feature is still available but flagged as obsolete. Thus, a deprecated feature
should not be used for new code. The phase-out became complete with the release of JDK 11 because support for applets was removed. As a point of interest, a few years after Java’s creation an alternative to applets was added to Java. Called Java Web Start, it enabled an application to be dynamically downloaded from a web page. It was a deployment mechanism that was especially useful for larger Java applications that were not appropriate for applets. The difference between an applet and a Web Start application is that a Web Start application runs on its own, not inside the browser. Thus, it looks much like a “normal” application. It does, however, require that a stand-alone JRE that supports Web Start is available on the host system. Beginning with JDK 11, Java Web Start support has been removed. Given that neither applets nor Java Web Start are supported by modern versions of Java, you might wonder what mechanism should be used to deploy a Java application. At the time of this writing, part of the answer is to use the jlink tool added by JDK 9. It can create a complete run-time image that includes all necessary support for your program, including the JRE. Although a detailed discussion of deployment strategies is outside the scope of this book, it is something that you will want to pay close attention to going forward.
A Faster Release Schedule Another major change has recently occurred in Java, but it does not involve changes to the language or the run-time environment. Rather, it relates to the way that Java releases are scheduled. In the past, major Java releases were typically separated by two or more years. However, subsequent to the release of JDK 9, the time between major Java releases has been decreased. Today, it is anticipated that a major release will occur on a strict time-based schedule, with the expected time between such releases being just six months. Each six-month release, now called a feature release, will include those features ready at the time of the release. This increased release cadence enables new features and enhancements to be available to Java programmers in a timely fashion. Furthermore, it allows Java to respond quickly to the demands of an ever-changing programming environment. Simply put, the faster release schedule promises to be a very positive development for Java programmers. Currently, feature releases are scheduled for March and September of each year. As a result, JDK 10 was released in March 2018, which was six months after the release of JDK 9. The next release (JDK 11) was in September 2018. Again, it is anticipated that every six months a new feature release will take
place. You will want to consult the Java documentation for the latest release schedule information. At the time of this writing, there are a number of new Java features on the horizon. Because of the faster release schedule, it is very likely that several of them will be added to Java over the next few years. You will want to review the information and release notes provided by each six-month release in detail. It is truly an exciting time to be a Java programmer!
Servlets: Java on the Server Side Client side code is just one half of the client/server equation. Not long after the initial release of Java, it became obvious that Java would also be useful on the server side. The result was the servlet. A servlet is a small program that executes on the server. Servlets are used to create dynamically generated content that is then served to the client. For example, an online store might use a servlet to look up the price for an item in a database. The price information is then used to dynamically generate a web page that is sent to the browser. Although dynamically generated content was available through mechanisms such as CGI (Common Gateway Interface), the servlet offered several advantages, including increased performance. Because servlets (like all Java programs) are compiled into bytecode and executed by the JVM, they are highly portable. Thus, the same servlet can be used in a variety of different server environments. The only requirements are that the server support the JVM and a servlet container. Today, server-side code in general constitutes a major use of Java.
The Java Buzzwords No discussion of Java’s history is complete without a look at the Java buzzwords. Although the fundamental forces that necessitated the invention of Java are portability and security, other factors also played an important role in molding the final form of the language. The key considerations were summed up by the Java team in the following list of buzzwords: • Simple • Secure
• Portable • Object-oriented • Robust • Multithreaded • Architecture-neutral • Interpreted • High performance • Distributed • Dynamic Two of these buzzwords have already been discussed: secure and portable. Let’s examine what each of the others implies.
Simple Java was designed to be easy for the professional programmer to learn and use effectively. Assuming that you have some programming experience, you will not find Java hard to master. If you already understand the basic concepts of objectoriented programming, learning Java will be even easier. Best of all, if you are an experienced C++ programmer, moving to Java will require very little effort. Because Java inherits the C/C++ syntax and many of the object-oriented features of C++, most programmers have little trouble learning Java.
Object-Oriented Although influenced by its predecessors, Java was not designed to be sourcecode compatible with any other language. This allowed the Java team the freedom to design with a blank slate. One outcome of this was a clean, usable, pragmatic approach to objects. Borrowing liberally from many seminal objectsoftware environments of the last few decades, Java manages to strike a balance between the purist’s “everything is an object” paradigm and the pragmatist’s “stay out of my way” model. The object model in Java is simple and easy to extend, while primitive types, such as integers, are kept as high-performance nonobjects.
Robust The multiplatformed environment of the Web places extraordinary demands on a
program, because the program must execute reliably in a variety of systems. Thus, the ability to create robust programs was given a high priority in the design of Java. To gain reliability, Java restricts you in a few key areas to force you to find your mistakes early in program development. At the same time, Java frees you from having to worry about many of the most common causes of programming errors. Because Java is a strictly typed language, it checks your code at compile time. However, it also checks your code at run time. Many hardto-track-down bugs that often turn up in hard-to-reproduce run-time situations are simply impossible to create in Java. Knowing that what you have written will behave in a predictable way under diverse conditions is a key feature of Java. To better understand how Java is robust, consider two of the main reasons for program failure: memory management mistakes and mishandled exceptional conditions (that is, run-time errors). Memory management can be a difficult, tedious task in traditional programming environments. For example, in C/C++, the programmer will often manually allocate and free dynamic memory. This sometimes leads to problems, because programmers will either forget to free memory that has been previously allocated or, worse, try to free some memory that another part of their code is still using. Java virtually eliminates these problems by managing memory allocation and deallocation for you. (In fact, deallocation is completely automatic, because Java provides garbage collection for unused objects.) Exceptional conditions in traditional environments often arise in situations such as division by zero or “file not found,” and they must be managed with clumsy and hard-to-read constructs. Java helps in this area by providing object-oriented exception handling. In a well-written Java program, all run-time errors can—and should—be managed by your program.
Multithreaded Java was designed to meet the real-world requirement of creating interactive, networked programs. To accomplish this, Java supports multithreaded programming, which allows you to write programs that do many things simultaneously. The Java run-time system comes with an elegant yet sophisticated solution for multiprocess synchronization that enables you to construct smoothly running interactive systems. Java’s easy-to-use approach to multithreading allows you to think about the specific behavior of your program, not the multitasking subsystem.
A central issue for the Java designers was that of code longevity and portability. At the time of Java’s creation, one of the main problems facing programmers was that no guarantee existed that if you wrote a program today, it would run tomorrow—even on the same machine. Operating system upgrades, processor upgrades, and changes in core system resources can all combine to make a program malfunction. The Java designers made several hard decisions in the Java language and the Java Virtual Machine in an attempt to alter this situation. Their goal was “write once; run anywhere, any time, forever.” To a great extent, this goal was accomplished.
Interpreted and High Performance As described earlier, Java enables the creation of cross-platform programs by compiling into an intermediate representation called Java bytecode. This code can be executed on any system that implements the Java Virtual Machine. Most previous attempts at cross-platform solutions have done so at the expense of performance. As explained earlier, the Java bytecode was carefully designed so that it would be easy to translate directly into native machine code for very high performance by using a just-in-time compiler. Java run-time systems that provide this feature lose none of the benefits of the platform-independent code.
Distributed Java is designed for the distributed environment of the Internet because it handles TCP/IP protocols. In fact, accessing a resource using a URL is not much different from accessing a file. Java also supports Remote Method Invocation (RMI). This feature enables a program to invoke methods across a network.
Dynamic Java programs carry with them substantial amounts of run-time type information that is used to verify and resolve accesses to objects at run time. This makes it possible to dynamically link code in a safe and expedient manner. This is crucial to the robustness of the Java environment, in which small fragments of bytecode may be dynamically updated on a running system.
The Evolution of Java
The initial release of Java was nothing short of revolutionary, but it did not mark the end of Java’s era of rapid innovation. Unlike most other software systems that usually settle into a pattern of small, incremental improvements, Java continued to evolve at an explosive pace. Soon after the release of Java 1.0, the designers of Java had already created Java 1.1. The features added by Java 1.1 were more significant and substantial than the increase in the minor revision number would have you think. Java 1.1 added many new library elements, redefined the way events are handled, and reconfigured many features of the 1.0 library. It also deprecated (rendered obsolete) several features originally defined by Java 1.0. Thus, Java 1.1 both added to and subtracted from attributes of its original specification. The next major release of Java was Java 2, where the “2” indicates “second generation.” The creation of Java 2 was a watershed event, marking the beginning of Java’s “modern age.” The first release of Java 2 carried the version number 1.2. It may seem odd that the first release of Java 2 used the 1.2 version number. The reason is that it originally referred to the internal version number of the Java libraries, but then was generalized to refer to the entire release. With Java 2, Sun repackaged the Java product as J2SE (Java 2 Platform Standard Edition), and the version numbers began to be applied to that product. Java 2 added support for a number of new features, such as Swing and the Collections Framework, and it enhanced the Java Virtual Machine and various programming tools. Java 2 also contained a few deprecations. The most important affected the Thread class in which the methods suspend( ), resume( ), and stop( ) were deprecated. J2SE 1.3 was the first major upgrade to the original Java 2 release. For the most part, it added to existing functionality and “tightened up” the development environment. In general, programs written for version 1.2 and those written for version 1.3 are source-code compatible. Although version 1.3 contained a smaller set of changes than the preceding three major releases, it was nevertheless important. The release of J2SE 1.4 further enhanced Java. This release contained several important upgrades, enhancements, and additions. For example, it added the new keyword assert, chained exceptions, and a channel-based I/O subsystem. It also made changes to the Collections Framework and the networking classes. In addition, numerous small changes were made throughout. Despite the significant number of new features, version 1.4 maintained nearly 100 percent source-code compatibility with prior versions. The next release of Java was J2SE 5, and it was revolutionary. Unlike most of
the previous Java upgrades, which offered important, but measured improvements, J2SE 5 fundamentally expanded the scope, power, and range of the language. To grasp the magnitude of the changes that J2SE 5 made to Java, consider the following list of its major new features: • Generics • Annotations • Autoboxing and auto-unboxing • Enumerations • Enhanced, for-each style for loop • Variable-length arguments (varargs) • Static import • Formatted I/O • Concurrency utilities This is not a list of minor tweaks or incremental upgrades. Each item in the list represented a significant addition to the Java language. Some, such as generics, the enhanced for, and varargs, introduced new syntax elements. Others, such as autoboxing and auto-unboxing, altered the semantics of the language. Annotations added an entirely new dimension to programming. In all cases, the impact of these additions went beyond their direct effects. They changed the very character of Java itself. The importance of these new features is reflected in the use of the version number “5.” The next version number for Java would normally have been 1.5. However, the new features were so significant that a shift from 1.4 to 1.5 just didn’t seem to express the magnitude of the change. Instead, Sun elected to increase the version number to 5 as a way of emphasizing that a major event was taking place. Thus, it was named J2SE 5, and the developer’s kit was called JDK 5. However, in order to maintain consistency, Sun decided to use 1.5 as its internal version number, which is also referred to as the developer version number. The “5” in J2SE 5 is called the product version number. The next release of Java was called Java SE 6. Sun once again decided to change the name of the Java platform. First, notice that the “2” was dropped. Thus, the platform was now named Java SE, and the official product name was Java Platform, Standard Edition 6. The Java Development Kit was called JDK 6. As with J2SE 5, the 6 in Java SE 6 is the product version number. The internal, developer version number is 1.6. Java SE 6 built on the base of J2SE 5, adding incremental improvements.
Java SE 6 added no major features to the Java language proper, but it did enhance the API libraries, added several new packages, and offered improvements to the run time. It also went through several updates during its (in Java terms) long life cycle, with several upgrades added along the way. In general, Java SE 6 served to further solidify the advances made by J2SE 5. Java SE 7 was the next release of Java, with the Java Development Kit being called JDK 7, and an internal version number of 1.7. Java SE 7 was the first major release of Java since Sun Microsystems was acquired by Oracle. Java SE 7 contained many new features, including significant additions to the language and the API libraries. Upgrades to the Java run-time system that support nonJava languages were also included, but it is the language and library additions that were of most interest to Java programmers. The new language features were developed as part of Project Coin. The purpose of Project Coin was to identify a number of small changes to the Java language that would be incorporated into JDK 7. Although these features were collectively referred to as “small,” the effects of these changes have been quite large in terms of the code they impact. In fact, for many programmers, these changes may well have been the most important new features in Java SE 7. Here is a list of the language features added by JDK 7: • A String can now control a switch statement. • Binary integer literals. • Underscores in numeric literals. • An expanded try statement, called try-with-resources, that supports automatic resource management. (For example, streams can be closed automatically when they are no longer needed.) • Type inference (via the diamond operator) when constructing a generic instance. • Enhanced exception handling in which two or more exceptions can be caught by a single catch (multi-catch) and better type checking for exceptions that are rethrown. • Although not a syntax change, the compiler warnings associated with some types of varargs methods were improved, and you have more control over the warnings. As you can see, even though the Project Coin features were considered small changes to the language, their benefits were much larger than the qualifier “small” would suggest. In particular, the try-with-resources statement has profoundly affected the way that stream-based code is written. Also, the ability
to use a String to control a switch statement was a long-desired improvement that simplified coding in many situations. Java SE 7 made several additions to the Java API library. Two of the most important were the enhancements to the NIO Framework and the addition of the Fork/Join Framework. NIO (which originally stood for New I/O) was added to Java in version 1.4. However, the changes added by Java SE 7 fundamentally expanded its capabilities. So significant were the changes, that the term NIO.2 is often used. The Fork/Join Framework provides important support for parallel programming. Parallel programming is the name commonly given to the techniques that make effective use of computers that contain more than one processor, including multicore systems. The advantage that multicore environments offer is the prospect of significantly increased program performance. The Fork/Join Framework addressed parallel programming by: • Simplifying the creation and use of tasks that can execute concurrently • Automatically making use of multiple processors Therefore, by using the Fork/Join Framework, you can easily create scaleable applications that automatically take advantage of the processors available in the execution environment. Of course, not all algorithms lend themselves to parallelization, but for those that do, a significant improvement in execution speed can be obtained. The next release of Java was Java SE 8, with the developer’s kit being called JDK 8. It has an internal version number of 1.8. JDK 8 was a significant upgrade to the Java language because of the inclusion of a far-reaching new language feature: the lambda expression. The impact of lambda expressions was, and will continue to be, profound, changing both the way that programming solutions are conceptualized and how Java code is written. As explained in detail in Chapter 15, lambda expressions add functional programming features to Java. In the process, lambda expressions can simplify and reduce the amount of source code needed to create certain constructs, such as some types of anonymous classes. The addition of lambda expressions also caused a new operator (the –>) and a new syntax element to be added to the language. The inclusion of lambda expressions has also had a wide-ranging effect on the Java libraries, with new features being added to take advantage of them. One of the most important was the new stream API, which is packaged in java.util.stream. The stream API supports pipeline operations on data and is optimized for lambda expressions. Another new package was java.util.function.
It defines a number of functional interfaces, which provide additional support for lambda expressions. Other new lambda-related features are found throughout the API library. Another lambda-inspired feature affects interface. Beginning with JDK 8, it is now possible to define a default implementation for a method specified by an interface. If no implementation for a default method is created, then the default defined by the interface is used. This feature enables interfaces to be gracefully evolved over time because a new method can be added to an interface without breaking existing code. It can also streamline the implementation of an interface when the defaults are appropriate. Other new features in JDK 8 include a new time and date API, type annotations, and the ability to use parallel processing when sorting an array, among others. The next release of Java was Java SE 9. The developer’s kit was called JDK 9. With the release of JDK 9, the internal version number is also 9. JDK 9 represented a major Java release, incorporating significant enhancements to both the Java language and its libraries. Like the JDK 5 and JDK 8 releases, JDK 9 affected the Java language and its API libraries in fundamental ways. The primary new JDK 9 feature was modules, which enable you to specify the relationship and dependencies of the code that comprises an application. Modules also add another dimension to Java’s access control features. The inclusion of modules caused a new syntax element and several keywords to be added to Java. Furthermore, a tool called jlink was added to the JDK, which enables a programmer to create a run-time image of an application that contains only the necessary modules. A new file type, called JMOD, was created. Modules also have a profound affect on the API library because, beginning with JDK 9, the library packages are now organized into modules. Although modules constitute a major Java enhancement, they are conceptually simple and straightforward. Furthermore, because pre-module legacy code is fully supported, modules can be integrated into the development process on your timeline. There is no need to immediately change any preexisting code to handle modules. In short, modules added substantial functionality without altering the essence of Java. In addition to modules, JDK 9 included many other new features. One of particular interest is JShell, which is a tool that supports interactive program experimentation and learning. (An introduction to JShell is found in Appendix B.) Another interesting upgrade is support for private interface methods. Their inclusion further enhanced JDK 8’s support for default methods in interfaces. JDK 9 added a search feature to the javadoc tool and a new tag called @index
to support it. As with previous releases, JDK 9 contained a number of enhancements to Java’s API libraries. As a general rule, in any Java release, it is the new features that receive the most attention. However, there was one high-profile aspect of Java that was deprecated by JDK 9: applets. Beginning with JDK 9, applets were no longer recommended for new projects. As explained earlier in this chapter, because of waning browser support for applets (and other factors), JDK 9 deprecated the entire applet API. The next release of Java was Java SE 10 (JDK 10). As explained earlier, beginning with JDK 10, Java releases are anticipated to occur on a strict timebased schedule, with the time between major releases expected to be just six months. As a result, JDK 10 was released in March 2018, which was six months after the release of JDK 9. The primary new language feature added by JDK 10 was support for local variable type inference. With local variable type inference, it is now possible to let the type of a local variable be inferred from the type of its initializer, rather than being explicitly specified. To support this new capability, the context-sensitive identifier var was added to Java as a reserved type name. Type inference can streamline code by eliminating the need to redundantly specify a variable’s type when it can be inferred from its initializer. It can also simplify declarations in cases in which the type is difficult to discern or cannot be explicitly specified. Local variable type inference has become a common part of the contemporary programming environment. Its inclusion in Java helps keep Java up-to-date with evolving trends in language design. Along with a number of other changes, JDK 10 also redefined the Java version string, changing the meaning of the version numbers so that they better align with the new time-based release schedule. At the time of this writing, the latest version of Java is Java SE 11 (JDK 11). It was released in September 2018, which was six months after JDK 10. The primary new language feature in JDK 11 is support for the use of var in a lambda expression. Along with a number of tweaks and updates to the API in general, JDK 11 adds a new networking API, which will be of interest to a wide range of developers. Called the HTTP Client API, it is packaged in java.net.http, and it provides enhanced, updated, and improved networking support for HTTP clients. Also, another execution mode was added to the Java launcher that enables it to directly execute simple single-file programs. JDK 11 also removes some features. Perhaps of the greatest interest because of its historical significance is the removal of support for applets. Recall that applets were first deprecated by JDK 9. With the release of JDK 11, applet support has
been removed. Support for another deployment-related technology called Java Web Start has also been removed from JDK 11. As the execution environment has continued to evolve, both applets and Java Web Start were rapidly losing relevance. Another key change in JDK 11 is that JavaFX is no longer included in the JDK. Instead, this GUI framework has become a separate open-source project. Because these features are no longer part of the JDK, they are not discussed in this book. One other point about the evolution of Java: Beginning in 2006, the process of open-sourcing Java began. Today, open-source implementations of the JDK are available. Open-sourcing further contributes to the dynamic nature of Java development. In the final analysis, Java’s legacy of innovation is secure. Java remains the vibrant, nimble language that the programming world has come to expect. The material in this book has been updated for JDK 11. Many new Java features, updates, and additions are described throughout. As the preceding discussion has highlighted, however, the history of Java programming is marked by dynamic change. You will want to review the new features in each subsequent Java release. Simply put: The evolution of Java continues!
A Culture of Innovation Since the beginning, Java has been at the center of a culture of innovation. Its original release redefined programming for the Internet. The Java Virtual Machine (JVM) and bytecode changed the way we think about security and portability. Portable code made the Web come alive. The Java Community Process (JCP) redefined the way that new ideas are assimilated into the language. The world of Java has never stood still for very long. JDK 11 is the latest release in Java’s ongoing, dynamic history.
An Overview of Java As in all other computer languages, the elements of Java do not exist in isolation. Rather, they work together to form the language as a whole. However, this interrelatedness can make it difficult to describe one aspect of Java without involving several others. Often a discussion of one feature implies prior knowledge of another. For this reason, this chapter presents a quick overview of several key features of Java. The material described here will give you a foothold that will allow you to write and understand simple programs. Most of the topics discussed will be examined in greater detail in the remaining chapters of Part I.
Object-Oriented Programming Object-oriented programming (OOP) is at the core of Java. In fact, all Java programs are to at least some extent object-oriented. OOP is so integral to Java that it is best to understand its basic principles before you begin writing even simple Java programs. Therefore, this chapter begins with a discussion of the theoretical aspects of OOP.
Two Paradigms All computer programs consist of two elements: code and data. Furthermore, a program can be conceptually organized around its code or around its data. That is, some programs are written around “what is happening” and others are written around “who is being affected.” These are the two paradigms that govern how a program is constructed. The first way is called the process-oriented model. This approach characterizes a program as a series of linear steps (that is, code). The process-oriented model can be thought of as code acting on data. Procedural languages such as C employ this model to considerable success. However, as mentioned in Chapter 1, problems with this approach appear as programs grow larger and more complex. To manage increasing complexity, the second approach, called objectoriented programming, was conceived. Object-oriented programming organizes
a program around its data (that is, objects) and a set of well-defined interfaces to that data. An object-oriented program can be characterized as data controlling access to code. As you will see, by switching the controlling entity to data, you can achieve several organizational benefits.
Abstraction An essential element of object-oriented programming is abstraction. Humans manage complexity through abstraction. For example, people do not think of a car as a set of tens of thousands of individual parts. They think of it as a welldefined object with its own unique behavior. This abstraction allows people to use a car to drive to the grocery store without being overwhelmed by the complexity of the individual parts. They can ignore the details of how the engine, transmission, and braking systems work. Instead, they are free to utilize the object as a whole. A powerful way to manage abstraction is through the use of hierarchical classifications. This allows you to layer the semantics of complex systems, breaking them into more manageable pieces. From the outside, the car is a single object. Once inside, you see that the car consists of several subsystems: steering, brakes, sound system, seat belts, heating, cellular phone, and so on. In turn, each of these subsystems is made up of more specialized units. For instance, the sound system might consist of a radio, a CD player, and/or MP3 player. The point is that you manage the complexity of the car (or any other complex system) through the use of hierarchical abstractions. Hierarchical abstractions of complex systems can also be applied to computer programs. The data from a traditional process-oriented program can be transformed by abstraction into its component objects. A sequence of process steps can become a collection of messages between these objects. Thus, each of these objects describes its own unique behavior. You can treat these objects as concrete entities that respond to messages telling them to do something. This is the essence of object-oriented programming. Object-oriented concepts form the heart of Java just as they form the basis for human understanding. It is important that you understand how these concepts translate into programs. As you will see, object-oriented programming is a powerful and natural paradigm for creating programs that survive the inevitable changes accompanying the life cycle of any major software project, including conception, growth, and aging. For example, once you have well-defined objects and clean, reliable interfaces to those objects, you can gracefully decommission
or replace parts of an older system without fear.
The Three OOP Principles All object-oriented programming languages provide mechanisms that help you implement the object-oriented model. They are encapsulation, inheritance, and polymorphism. Let’s take a look at these concepts now.
Encapsulation Encapsulation is the mechanism that binds together code and the data it manipulates, and keeps both safe from outside interference and misuse. One way to think about encapsulation is as a protective wrapper that prevents the code and data from being arbitrarily accessed by other code defined outside the wrapper. Access to the code and data inside the wrapper is tightly controlled through a well-defined interface. To relate this to the real world, consider the automatic transmission on an automobile. It encapsulates hundreds of bits of information about your engine, such as how much you are accelerating, the pitch of the surface you are on, and the position of the shift lever. You, as the user, have only one method of affecting this complex encapsulation: by moving the gear-shift lever. You can’t affect the transmission by using the turn signal or windshield wipers, for example. Thus, the gear-shift lever is a well-defined (indeed, unique) interface to the transmission. Further, what occurs inside the transmission does not affect objects outside the transmission. For example, shifting gears does not turn on the headlights! Because an automatic transmission is encapsulated, dozens of car manufacturers can implement one in any way they please. However, from the driver’s point of view, they all work the same. This same idea can be applied to programming. The power of encapsulated code is that everyone knows how to access it and thus can use it regardless of the implementation details—and without fear of unexpected side effects. In Java, the basis of encapsulation is the class. Although the class will be examined in great detail later in this book, the following brief discussion will be helpful now. A class defines the structure and behavior (data and code) that will be shared by a set of objects. Each object of a given class contains the structure and behavior defined by the class, as if it were stamped out by a mold in the shape of the class. For this reason, objects are sometimes referred to as instances of a class. Thus, a class is a logical construct; an object has physical reality. When you create a class, you will specify the code and data that constitute that class. Collectively, these elements are called members of the class.
Specifically, the data defined by the class are referred to as member variables or instance variables. The code that operates on that data is referred to as member methods or just methods. (If you are familiar with C/C++, it may help to know that what a Java programmer calls a method, a C/C++ programmer calls a function.) In properly written Java programs, the methods define how the member variables can be used. This means that the behavior and interface of a class are defined by the methods that operate on its instance data. Since the purpose of a class is to encapsulate complexity, there are mechanisms for hiding the complexity of the implementation inside the class. Each method or variable in a class may be marked private or public. The public interface of a class represents everything that external users of the class need to know, or may know. The private methods and data can only be accessed by code that is a member of the class. Therefore, any other code that is not a member of the class cannot access a private method or variable. Since the private members of a class may only be accessed by other parts of your program through the class’ public methods, you can ensure that no improper actions take place. Of course, this means that the public interface should be carefully designed not to expose too much of the inner workings of a class (see Figure 2-1).
Figure 2-1 Encapsulation: public methods can be used to protect private data.
Inheritance Inheritance is the process by which one object acquires the properties of another object. This is important because it supports the concept of hierarchical classification. As mentioned earlier, most knowledge is made manageable by hierarchical (that is, top-down) classifications. For example, a Golden Retriever is part of the classification dog, which in turn is part of the mammal class, which is under the larger class animal. Without the use of hierarchies, each object would need to define all of its characteristics explicitly. However, by use of inheritance, an object need only define those qualities that make it unique within its class. It can inherit its general attributes from its parent. Thus, it is the inheritance mechanism that makes it possible for one object to be a specific instance of a more general case. Let’s take a closer look at this process. Most people naturally view the world as made up of objects that are related to each other in a hierarchical way, such as animals, mammals, and dogs. If you wanted to describe animals in an abstract way, you would say they have some attributes, such as size, intelligence, and type of skeletal system. Animals also have certain behavioral aspects; they eat, breathe, and sleep. This description of attributes and behavior is the class definition for animals. If you wanted to describe a more specific class of animals, such as mammals, they would have more specific attributes, such as type of teeth and mammary glands. This is known as a subclass of animals, where animals are referred to as mammals’ superclass. Since mammals are simply more precisely specified animals, they inherit all of the attributes from animals. A deeply inherited subclass inherits all of the attributes from each of its ancestors in the class hierarchy. Inheritance interacts with encapsulation as well. If a given class encapsulates some attributes, then any subclass will have the same attributes plus any that it adds as part of its specialization (see Figure 2-2). This is a key concept that lets object-oriented programs grow in complexity linearly rather than geometrically. A new subclass inherits all of the attributes of all of its ancestors. It does not have unpredictable interactions with the majority of the rest of the code in the system.
Figure 2-2 Labrador inherits the encapsulation of all its superclasses.
Polymorphism (from Greek, meaning “many forms”) is a feature that allows one interface to be used for a general class of actions. The specific action is determined by the exact nature of the situation. Consider a stack (which is a lastin, first-out list). You might have a program that requires three types of stacks. One stack is used for integer values, one for floating-point values, and one for characters. The algorithm that implements each stack is the same, even though the data being stored differs. In a non–object-oriented language, you would be required to create three different sets of stack routines, with each set using different names. However, because of polymorphism, in Java you can specify a general set of stack routines that all share the same names. More generally, the concept of polymorphism is often expressed by the phrase “one interface, multiple methods.” This means that it is possible to design a generic interface to a group of related activities. This helps reduce complexity by allowing the same interface to be used to specify a general class of action. It is the compiler’s job to select the specific action (that is, method) as it applies to each situation. You, the programmer, do not need to make this selection manually. You need only remember and utilize the general interface. Extending the dog analogy, a dog’s sense of smell is polymorphic. If the dog smells a cat, it will bark and run after it. If the dog smells its food, it will salivate and run to its bowl. The same sense of smell is at work in both situations. The difference is what is being smelled, that is, the type of data being operated upon by the dog’s nose! This same general concept can be implemented in Java as it applies to methods within a Java program.
Polymorphism, Encapsulation, and Inheritance Work Together When properly applied, polymorphism, encapsulation, and inheritance combine to produce a programming environment that supports the development of far more robust and scaleable programs than does the process-oriented model. A well-designed hierarchy of classes is the basis for reusing the code in which you have invested time and effort developing and testing. Encapsulation allows you to migrate your implementations over time without breaking the code that depends on the public interface of your classes. Polymorphism allows you to create clean, sensible, readable, and resilient code. Of the two real-world examples, the automobile more completely illustrates the power of object-oriented design. Dogs are fun to think about from an inheritance standpoint, but cars are more like programs. All drivers rely on inheritance to drive different types (subclasses) of vehicles. Whether the vehicle is a school bus, a Mercedes sedan, a Porsche, or the family minivan, drivers can
all more or less find and operate the steering wheel, the brakes, and the accelerator. After a bit of gear grinding, most people can even manage the difference between a stick shift and an automatic, because they fundamentally understand their common superclass, the transmission. People interface with encapsulated features on cars all the time. The brake and gas pedals hide an incredible array of complexity with an interface so simple you can operate them with your feet! The implementation of the engine, the style of brakes, and the size of the tires have no effect on how you interface with the class definition of the pedals. The final attribute, polymorphism, is clearly reflected in the ability of car manufacturers to offer a wide array of options on basically the same vehicle. For example, you can get an antilock braking system or traditional brakes, power or rack-and-pinion steering, and 4-, 6-, or 8-cylinder engines. Either way, you will still press the brake pedal to stop, turn the steering wheel to change direction, and press the accelerator when you want to move. The same interface can be used to control a number of different implementations. As you can see, it is through the application of encapsulation, inheritance, and polymorphism that the individual parts are transformed into the object known as a car. The same is also true of computer programs. By the application of objectoriented principles, the various parts of a complex program can be brought together to form a cohesive, robust, maintainable whole. As mentioned at the start of this section, every Java program is objectoriented. Or, put more precisely, every Java program involves encapsulation, inheritance, and polymorphism. Although the short example programs shown in the rest of this chapter and in the next few chapters may not seem to exhibit all of these features, they are nevertheless present. As you will see, many of the features supplied by Java are part of its built-in class libraries, which do make extensive use of encapsulation, inheritance, and polymorphism.
A First Simple Program Now that the basic object-oriented underpinning of Java has been discussed, let’s look at some actual Java programs. Let’s start by compiling and running the short sample program shown here. As you will see, this involves a little more work than you might imagine.
NOTE The descriptions that follow use the standard Java SE Development Kit (JDK), which is available from Oracle. (Open source versions are also available.) If you are using an integrated development environment (IDE), then you will need to follow a different procedure for compiling and executing Java programs. In this case, consult your IDE’s documentation for details.
Entering the Program For most computer languages, the name of the file that holds the source code to a program is immaterial. However, this is not the case with Java. The first thing that you must learn about Java is that the name you give to a source file is very important. For this example, the name of the source file should be Example.java. Let’s see why. In Java, a source file is officially called a compilation unit. It is a text file that contains (among other things) one or more class definitions. (For now, we will be using source files that contain only one class.) The Java compiler requires that a source file use the .java filename extension. As you can see by looking at the program, the name of the class defined by the program is also Example. This is not a coincidence. In Java, all code must reside inside a class. By convention, the name of the main class should match the name of the file that holds the program. You should also make sure that the capitalization of the filename matches the class name. The reason for this is that Java is case-sensitive. At this point, the convention that filenames correspond to class names may seem arbitrary. However, this convention makes it easier to maintain and organize your programs. Furthermore, as you will see later in this book, in some cases, it is required.
Compiling the Program To compile the Example program, execute the compiler, javac, specifying the
name of the source file on the command line, as shown here: C:\>javac Example.java
The javac compiler creates a file called Example.class that contains the bytecode version of the program. As discussed earlier, the Java bytecode is the intermediate representation of your program that contains instructions the Java Virtual Machine will execute. Thus, the output of javac is not code that can be directly executed. To actually run the program, you must use the Java application launcher called java. To do so, pass the class name Example as a command-line argument, as shown here: C:\>java Example
When the program is run, the following output is displayed: This is a simple Java program.
When Java source code is compiled, each individual class is put into its own output file named after the class and using the .class extension. This is why it is a good idea to give your Java source files the same name as the class they contain—the name of the source file will match the name of the .class file. When you execute java as just shown, you are actually specifying the name of the class that you want to execute. It will automatically search for a file by that name that has the .class extension. If it finds the file, it will execute the code contained in the specified class. NOTE Beginning with JDK 11, Java provides a way to run some types of simple programs directly from a source file, without explicitly invoking javac. This technique, which can be useful in some situations, is described in Appendix C. For the purposes of this book, it is assumed that you are using the normal compilation process just described.
A Closer Look at the First Sample Program Although Example.java is quite short, it includes several key features that are common to all Java programs. Let’s closely examine each part of the program. The program begins with the following lines:
This is a comment. Like most other programming languages, Java lets you enter a remark into a program’s source file. The contents of a comment are ignored by the compiler. Instead, a comment describes or explains the operation of the program to anyone who is reading its source code. In this case, the comment describes the program and reminds you that the source file should be called Example.java. Of course, in real applications, comments generally explain how some part of the program works or what a specific feature does. Java supports three styles of comments. The one shown at the top of the program is called a multiline comment. This type of comment must begin with /* and end with */. Anything between these two comment symbols is ignored by the compiler. As the name suggests, a multiline comment may be several lines long. The next line of code in the program is shown here: class Example
This line uses the keyword class to declare that a new class is being defined. Example is an identifier that is the name of the class. The entire class definition, including all of its members, will be between the opening curly brace (<) and the closing curly brace (>). For the moment, don’t worry too much about the details of a class except to note that in Java, all program activity occurs within one. This is one reason why all Java programs are (at least a little bit) object-oriented. The next line in the program is the single-line comment, shown here: // Your program begins with a call to main().
This is the second type of comment supported by Java. A single-line comment begins with a // and ends at the end of the line. As a general rule, programmers use multiline comments for longer remarks and single-line comments for brief, line-by-line descriptions. The third type of comment, a documentation comment, will be discussed in the “Comments” section later in this chapter. The next line of code is shown here: public static void main(String args[ ])
This line begins the main( ) method. As the comment preceding it suggests, this is the line at which the program will begin executing. As a general rule, a Java program begins execution by calling main( ). The full meaning of each part of this line cannot be given now, since it involves a detailed understanding of Java’s approach to encapsulation. However, since most of the examples in the first part of this book will use this line of code, let’s take a brief look at each part now. The public keyword is an access modifier, which allows the programmer to control the visibility of class members. When a class member is preceded by public, then that member may be accessed by code outside the class in which it is declared. (The opposite of public is private, which prevents a member from being used by code defined outside of its class.) In this case, main( ) must be declared as public, since it must be called by code outside of its class when the program is started. The keyword static allows main( ) to be called without having to instantiate a particular instance of the class. This is necessary since main( ) is called by the Java Virtual Machine before any objects are made. The keyword void simply tells the compiler that main( ) does not return a value. As you will see, methods may also return values. If all this seems a bit confusing, don’t worry. All of these concepts will be discussed in detail in subsequent chapters. As stated, main( ) is the method called when a Java application begins. Keep in mind that Java is case-sensitive. Thus, Main is different from main. It is important to understand that the Java compiler will compile classes that do not contain a main( ) method. But java has no way to run these classes. So, if you had typed Main instead of main, the compiler would still compile your program. However, java would report an error because it would be unable to find the main( ) method. Any information that you need to pass to a method is received by variables specified within the set of parentheses that follow the name of the method. These variables are called parameters. If there are no parameters required for a given method, you still need to include the empty parentheses. In main( ), there is only one parameter, albeit a complicated one. String args[ ] declares a parameter named args, which is an array of instances of the class String. (Arrays are collections of similar objects.) Objects of type String store character strings. In this case, args receives any command-line arguments present when the program is executed. This program does not make use of this information, but other programs shown later in this book will. The last character on the line is the <. This signals the start of main( )’s body. All of the code that comprises a method will occur between the method’s
opening curly brace and its closing curly brace. One other point: main( ) is simply a starting place for your program. A complex program will have dozens of classes, only one of which will need to have a main( ) method to get things started. Furthermore, for some types of programs, you won’t need main( ) at all. However, for most of the programs shown in this book, main( ) is required. The next line of code is shown here. Notice that it occurs inside main( ). System.out.println("This is a simple Java program.");
This line outputs the string "This is a simple Java program." followed by a new line on the screen. Output is actually accomplished by the built-in println( ) method. In this case, println( ) displays the string which is passed to it. As you will see, println( ) can be used to display other types of information, too. The line begins with System.out. While too complicated to explain in detail at this time, briefly, System is a predefined class that provides access to the system, and out is the output stream that is connected to the console. As you have probably guessed, console output (and input) is not used frequently in most real-world Java applications. Since most modern computing environments are graphical in nature, console I/O is used mostly for simple utility programs, demonstration programs, and server-side code. Later in this book, you will learn other ways to generate output using Java. But for now, we will continue to use the console I/O methods. Notice that the println( ) statement ends with a semicolon. Many statements in Java end with a semicolon. As you will see, the semicolon is an important part of the Java syntax. The first > in the program ends main( ), and the last > ends the Example class definition.
A Second Short Program Perhaps no other concept is more fundamental to a programming language than that of a variable. As you may know, a variable is a named memory location that may be assigned a value by your program. The value of a variable may be changed during the execution of the program. The next program shows how a variable is declared and how it is assigned a value. The program also illustrates some new aspects of console output. As the comments at the top of the program state, you should call this file Example2.java.
When you run this program, you will see the following output: This is num: 100 The value of num * 2 is 200
Let’s take a close look at why this output is generated. The first new line in the program is shown here: int num; // this declares a variable called num
This line declares an integer variable called num. Java (like most other languages) requires that variables be declared before they are used. Following is the general form of a variable declaration: type var-name; Here, type specifies the type of variable being declared, and var-name is the name of the variable. If you want to declare more than one variable of the specified type, you may use a comma-separated list of variable names. Java defines several data types, including integer, character, and floating-point. The keyword int specifies an integer type.
In the program, the line num = 100; // this assigns num the value 100
assigns to num the value 100. In Java, the assignment operator is a single equal sign. The next line of code outputs the value of num preceded by the string "This is num:". System.out.println("This is num: " + num);
In this statement, the plus sign causes the value of num to be appended to the string that precedes it, and then the resulting string is output. (Actually, num is first converted from an integer into its string equivalent and then concatenated with the string that precedes it. This process is described in detail later in this book.) This approach can be generalized. Using the + operator, you can join together as many items as you want within a single println( ) statement. The next line of code assigns num the value of num times 2. Like most other languages, Java uses the * operator to indicate multiplication. After this line executes, num will contain the value 200. Here are the next two lines in the program: System.out.print ("The value of num * 2 is "); System.out.println (num);
Several new things are occurring here. First, the built-in method print( ) is used to display the string "The value of num * 2 is ". This string is not followed by a newline. This means that when the next output is generated, it will start on the same line. The print( ) method is just like println( ), except that it does not output a newline character after each call. Now look at the call to println( ). Notice that num is used by itself. Both print( ) and println( ) can be used to output values of any of Java’s built-in types.
Two Control Statements Although Chapter 5 will look closely at control statements, two are briefly introduced here so that they can be used in example programs in Chapters 3 and 4. They will also help illustrate an important aspect of Java: blocks of code.
The if Statement The Java if statement works much like the IF statement in any other language. It determines the flow of execution based on whether some condition is true or false. Its simplest form is shown here: if(condition) statement; Here, condition is a Boolean expression. (A Boolean expression is one that evaluates to either true or false.) If condition is true, then the statement is executed. If condition is false, then the statement is bypassed. Here is an example: if(num 9 is necessary because the + operator has a higher precedence than the >.
A Closer Look at Literals Literals were mentioned briefly in Chapter 2. Now that the built-in types have been formally described, let’s take a closer look at them.
Integer Literals Integers are probably the most commonly used type in the typical program. Any whole number value is an integer literal. Examples are 1, 2, 3, and 42. These are all decimal values, meaning they are describing a base 10 number. Two other bases that can be used in integer literals are octal (base eight) and hexadecimal (base 16). Octal values are denoted in Java by a leading zero. Normal decimal numbers cannot have a leading zero. Thus, the seemingly valid value 09 will produce an error from the compiler, since 9 is outside of octal’s 0 to 7 range. A more common base for numbers used by programmers is hexadecimal, which matches cleanly with modulo 8 word sizes, such as 8, 16, 32, and 64 bits. You signify a hexadecimal constant with a leading zero-x, (0x or 0X). The range of a hexadecimal digit is 0 to 15, so A through F (or a through f ) are substituted for 10 through 15. Integer literals create an int value, which in Java is a 32-bit integer value. Since Java is strongly typed, you might be wondering how it is possible to assign
an integer literal to one of Java’s other integer types, such as byte or long, without causing a type mismatch error. Fortunately, such situations are easily handled. When a literal value is assigned to a byte or short variable, no error is generated if the literal value is within the range of the target type. An integer literal can always be assigned to a long variable. However, to specify a long literal, you will need to explicitly tell the compiler that the literal value is of type long. You do this by appending an upper- or lowercase L to the literal. For example, 0x7ffffffffffffffL or 9223372036854775807L is the largest long. An integer can also be assigned to a char as long as it is within range. You can also specify integer literals using binary. To do so, prefix the value with 0b or 0B. For example, this specifies the decimal value 10 using a binary literal: int x = 0b1010;
Among other uses, the addition of binary literals makes it easier to enter values used as bitmasks. In such a case, the decimal (or hexadecimal) representation of the value does not visually convey its meaning relative to its use. The binary literal does. You can embed one or more underscores in an integer literal. Doing so makes it easier to read large integer literals. When the literal is compiled, the underscores are discarded. For example, given int x = 123_456_789;
the value given to x will be 123,456,789. The underscores will be ignored. Underscores can only be used to separate digits. They cannot come at the beginning or the end of a literal. It is, however, permissible for more than one underscore to be used between two digits. For example, this is valid: int x = 123___456___789;
The use of underscores in an integer literal is especially useful when encoding such things as telephone numbers, customer ID numbers, part numbers, and so on. They are also useful for providing visual groupings when specifying binary literals. For example, binary values are often visually grouped in four-digits units, as shown here: int x = 0b1101_0101_0001_1010;
Floating-Point Literals Floating-point numbers represent decimal values with a fractional component. They can be expressed in either standard or scientific notation. Standard notation consists of a whole number component followed by a decimal point followed by a fractional component. For example, 2.0, 3.14159, and 0.6667 represent valid standard-notation floating-point numbers. Scientific notation uses a standardnotation, floating-point number plus a suffix that specifies a power of 10 by which the number is to be multiplied. The exponent is indicated by an E or e followed by a decimal number, which can be positive or negative. Examples include 6.022E23, 314159E–05, and 2e+100. Floating-point literals in Java default to double precision. To specify a float literal, you must append an F or f to the constant. You can also explicitly specify a double literal by appending a D or d. Doing so is, of course, redundant. The default double type consumes 64 bits of storage, while the smaller float type requires only 32 bits. Hexadecimal floating-point literals are also supported, but they are rarely used. They must be in a form similar to scientific notation, but a P or p, rather than an E or e, is used. For example, 0x12.2P2 is a valid floating-point literal. The value following the P, called the binary exponent, indicates the power-oftwo by which the number is multiplied. Therefore, 0x12.2P2 represents 72.5. You can embed one or more underscores in a floating-point literal. This feature works the same as it does for integer literals, which were just described. Its purpose is to make it easier to read large floating-point literals. When the literal is compiled, the underscores are discarded. For example, given double num = 9_423_497_862.0;
the value given to num will be 9,423,497,862.0. The underscores will be ignored. As is the case with integer literals, underscores can only be used to separate digits. They cannot come at the beginning or the end of a literal. It is, however, permissible for more than one underscore to be used between two digits. It is also permissible to use underscores in the fractional portion of the number. For example, double num = 9_423_497.1_0_9;
is legal. In this case, the fractional part is .109.
Boolean Literals Boolean literals are simple. There are only two logical values that a boolean value can have, true and false. The values of true and false do not convert into any numerical representation. The true literal in Java does not equal 1, nor does the false literal equal 0. In Java, the Boolean literals can only be assigned to variables declared as boolean or used in expressions with Boolean operators.
Character Literals Characters in Java are indices into the Unicode character set. They are 16-bit values that can be converted into integers and manipulated with the integer operators, such as the addition and subtraction operators. A literal character is represented inside a pair of single quotes. All of the visible ASCII characters can be directly entered inside the quotes, such as 'a', 'z', and '@'. For characters that are impossible to enter directly, there are several escape sequences that allow you to enter the character you need, such as ' \' ' for the single-quote character itself and ' \n' for the newline character. There is also a mechanism for directly entering the value of a character in octal or hexadecimal. For octal notation, use the backslash followed by the three-digit number. For example, ' \141' is the letter 'a'. For hexadecimal, you enter a backslash-u ( \u), then exactly four hexadecimal digits. For example, ' \u0061' is the ISO-Latin-1 'a' because the top byte is zero. ' \ua432 ' is a Japanese Katakana character. Table 3-1 shows the character escape sequences.
Table 3-1 Character Escape Sequences
String Literals String literals in Java are specified like they are in most other languages—by enclosing a sequence of characters between a pair of double quotes. Examples of string literals are "Hello World" "two\nlines" " \"This is in quotes\"" The escape sequences and octal/hexadecimal notations that were defined for character literals work the same way inside of string literals. One important thing to note about Java strings is that they must begin and end on the same line. There is no line-continuation escape sequence as there is in some other languages. NOTE As you may know, in some other languages strings are implemented as arrays of characters. However, this is not the case in Java. Strings are actually object types. As you will see later in this book, because Java implements strings as objects, Java includes extensive string-handling capabilities that are both powerful and easy to use.
Variables The variable is the basic unit of storage in a Java program. A variable is defined by the combination of an identifier, a type, and an optional initializer. In addition, all variables have a scope, which defines their visibility, and a lifetime. These elements are examined next.
Declaring a Variable In Java, all variables must be declared before they can be used. The basic form of a variable declaration is shown here: type identifier [ = value ][, identifier [= value ] …]; Here, type is one of Java’s atomic types, or the name of a class or interface. (Class and interface types are discussed later in Part I of this book.) The identifier is the name of the variable. You can initialize the variable by specifying an equal sign and a value. Keep in mind that the initialization
expression must result in a value of the same (or compatible) type as that specified for the variable. To declare more than one variable of the specified type, use a comma-separated list. Here are several examples of variable declarations of various types. Note that some include an initialization.
The identifiers that you choose have nothing intrinsic in their names that indicates their type. Java allows any properly formed identifier to have any declared type.
Dynamic Initialization Although the preceding examples have used only constants as initializers, Java allows variables to be initialized dynamically, using any expression valid at the time the variable is declared. For example, here is a short program that computes the length of the hypotenuse of a right triangle given the lengths of its two opposing sides:
Here, three local variables—a, b, and c—are declared. The first two, a and b, are initialized by constants. However, c is initialized dynamically to the length of the hypotenuse (using the Pythagorean theorem). The program uses another of
Java’s built-in methods, sqrt( ), which is a member of the Math class, to compute the square root of its argument. The key point here is that the initialization expression may use any element valid at the time of the initialization, including calls to methods, other variables, or literals.
The Scope and Lifetime of Variables So far, all of the variables used have been declared at the start of the main( ) method. However, Java allows variables to be declared within any block. As explained in Chapter 2, a block is begun with an opening curly brace and ended by a closing curly brace. A block defines a scope. Thus, each time you start a new block, you are creating a new scope. A scope determines what objects are visible to other parts of your program. It also determines the lifetime of those objects. It is not uncommon to think in terms of two general categories of scopes: global and local. However, these traditional scopes do not fit well with Java’s strict, object-oriented model. While it is possible to create what amounts to being a global scope, it is by far the exception, not the rule. In Java, the two major scopes are those defined by a class and those defined by a method. Even this distinction is somewhat artificial. However, since the class scope has several unique properties and attributes that do not apply to the scope defined by a method, this distinction makes some sense. Because of the differences, a discussion of class scope (and variables declared within it) is deferred until Chapter 6, when classes are described. For now, we will only examine the scopes defined by or within a method. The scope defined by a method begins with its opening curly brace. However, if that method has parameters, they too are included within the method’s scope. A method’s scope ends with its closing curly brace. This block of code is called the method body. As a general rule, variables declared inside a scope are not visible (that is, accessible) to code that is defined outside that scope. Thus, when you declare a variable within a scope, you are localizing that variable and protecting it from unauthorized access and/or modification. Indeed, the scope rules provide the foundation for encapsulation. A variable declared within a block is called a local variable. Scopes can be nested. For example, each time you create a block of code, you are creating a new, nested scope. When this occurs, the outer scope encloses the inner scope. This means that objects declared in the outer scope will be visible to
code within the inner scope. However, the reverse is not true. Objects declared within the inner scope will not be visible outside it. To understand the effect of nested scopes, consider the following program:
As the comments indicate, the variable x is declared at the start of main( )’s scope and is accessible to all subsequent code within main( ). Within the if block, y is declared. Since a block defines a scope, y is only visible to other code within its block. This is why outside of its block, the line y = 100; is commented out. If you remove the leading comment symbol, a compile-time error will occur, because y is not visible outside of its block. Within the if block, x can be used because code within a block (that is, a nested scope) has access to variables declared by an enclosing scope. Within a block, variables can be declared at any point, but are valid only after they are declared. Thus, if you define a variable at the start of a method, it is available to all of the code within that method. Conversely, if you declare a variable at the end of a block, it is effectively useless, because no code will have access to it. For example, this fragment is invalid because count cannot be used prior to its declaration:
// This fragment is wrong! count = 100; // oops! cannot use count before it is declared! int count;
Here is another important point to remember: variables are created when their scope is entered, and destroyed when their scope is left. This means that a variable will not hold its value once it has gone out of scope. Therefore, variables declared within a method will not hold their values between calls to that method. Also, a variable declared within a block will lose its value when the block is left. Thus, the lifetime of a variable is confined to its scope. If a variable declaration includes an initializer, then that variable will be reinitialized each time the block in which it is declared is entered. For example, consider the next program:
The output generated by this program is shown here: y is: -1 y is now: 100 y is: -1 y is now: 100 y is: -1 y is now: 100
As you can see, y is reinitialized to –1 each time the inner for loop is entered. Even though it is subsequently assigned the value 100, this value is lost. One last point: Although blocks can be nested, you cannot declare a variable to have the same name as one in an outer scope. For example, the following
program is illegal:
Type Conversion and Casting If you have previous programming experience, then you already know that it is fairly common to assign a value of one type to a variable of another type. If the two types are compatible, then Java will perform the conversion automatically. For example, it is always possible to assign an int value to a long variable. However, not all types are compatible, and thus, not all type conversions are implicitly allowed. For instance, there is no automatic conversion defined from double to byte. Fortunately, it is still possible to obtain a conversion between incompatible types. To do so, you must use a cast, which performs an explicit conversion between incompatible types. Let’s look at both automatic type conversions and casting.
Java’s Automatic Conversions When one type of data is assigned to another type of variable, an automatic type conversion will take place if the following two conditions are met: • The two types are compatible. • The destination type is larger than the source type. When these two conditions are met, a widening conversion takes place. For example, the int type is always large enough to hold all valid byte values, so no explicit cast statement is required. For widening conversions, the numeric types, including integer and floatingpoint types, are compatible with each other. However, there are no automatic conversions from the numeric types to char or boolean. Also, char and boolean
are not compatible with each other. As mentioned earlier, Java also performs an automatic type conversion when storing a literal integer constant into variables of type byte, short, long, or char.
Casting Incompatible Types Although the automatic type conversions are helpful, they will not fulfill all needs. For example, what if you want to assign an int value to a byte variable? This conversion will not be performed automatically, because a byte is smaller than an int. This kind of conversion is sometimes called a narrowing conversion, since you are explicitly making the value narrower so that it will fit into the target type. To create a conversion between two incompatible types, you must use a cast. A cast is simply an explicit type conversion. It has this general form: (target-type) value Here, target-type specifies the desired type to convert the specified value to. For example, the following fragment casts an int to a byte. If the integer’s value is larger than the range of a byte, it will be reduced modulo (the remainder of an integer division by the) byte’s range. int a; byte b; // … b = (byte) a;
A different type of conversion will occur when a floating-point value is assigned to an integer type: truncation. As you know, integers do not have fractional components. Thus, when a floating-point value is assigned to an integer type, the fractional component is lost. For example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1. The 0.23 will have been truncated. Of course, if the size of the whole number component is too large to fit into the target integer type, then that value will be reduced modulo the target type’s range. The following program demonstrates some type conversions that require casts:
This program generates the following output: Conversion of int to byte. i and b 257 1 Conversion of double to int. d and i 323.142 323 Conversion of double to byte. d and b 323.142 67
Let’s look at each conversion. When the value 257 is cast into a byte variable, the result is the remainder of the division of 257 by 256 (the range of a byte), which is 1 in this case. When the d is converted to an int, its fractional component is lost. When d is converted to a byte, its fractional component is lost, and the value is reduced modulo 256, which in this case is 67.
Automatic Type Promotion in Expressions
In addition to assignments, there is another place where certain type conversions may occur: in expressions. To see why, consider the following. In an expression, the precision required of an intermediate value will sometimes exceed the range of either operand. For example, examine the following expression: byte a = 40; byte b = 50; byte c = 100; int d = a * b / c;
The result of the intermediate term a * b easily exceeds the range of either of its byte operands. To handle this kind of problem, Java automatically promotes each byte, short, or char operand to int when evaluating an expression. This means that the subexpression a*b is performed using integers—not bytes. Thus, 2,000, the result of the intermediate expression, 50 * 40, is legal even though a and b are both specified as type byte. As useful as the automatic promotions are, they can cause confusing compiletime errors. For example, this seemingly correct code causes a problem: byte b = 50; b = b * 2; // Error! Cannot assign an int to a byte!
The code is attempting to store 50 * 2, a perfectly valid byte value, back into a byte variable. However, because the operands were automatically promoted to int when the expression was evaluated, the result has also been promoted to int. Thus, the result of the expression is now of type int, which cannot be assigned to a byte without the use of a cast. This is true even if, as in this particular case, the value being assigned would still fit in the target type. In cases where you understand the consequences of overflow, you should use an explicit cast, such as byte b = 50; b = (byte)(b * 2);
which yields the correct value of 100.
The Type Promotion Rules Java defines several type promotion rules that apply to expressions. They are as follows: First, all byte, short, and char values are promoted to int, as just described. Then, if one operand is a long, the whole expression is promoted to
long. If one operand is a float, the entire expression is promoted to float. If any of the operands are double, the result is double. The following program demonstrates how each value in the expression gets promoted to match the second argument to each binary operator:
Let’s look closely at the type promotions that occur in this line from the program: double result = (f * b) + (i / c) - (d * s);
In the first subexpression, f * b, b is promoted to a float and the result of the subexpression is float. Next, in the subexpression i/c, c is promoted to int, and the result is of type int. Then, in d * s, the value of s is promoted to double, and the type of the subexpression is double. Finally, these three intermediate values, float, int, and double, are considered. The outcome of float plus an int is a float. Then the resultant float minus the last double is promoted to double, which is the type for the final result of the expression.
Arrays An array is a group of like-typed variables that are referred to by a common name. Arrays of any type can be created and may have one or more dimensions. A specific element in an array is accessed by its index. Arrays offer a convenient means of grouping related information.
One-Dimensional Arrays A one-dimensional array is, essentially, a list of like-typed variables. To create an array, you first must create an array variable of the desired type. The general form of a one-dimensional array declaration is type var-name[ ]; Here, type declares the element type (also called the base type) of the array. The element type determines the data type of each element that comprises the array. Thus, the element type for the array determines what type of data the array will hold. For example, the following declares an array named month_days with the type “array of int”: int month_days[];
Although this declaration establishes the fact that month_days is an array variable, no array actually exists. To link month_days with an actual, physical array of integers, you must allocate one using new and assign it to month_days. new is a special operator that allocates memory. You will look more closely at new in a later chapter, but you need to use it now to allocate memory for arrays. The general form of new as it applies to onedimensional arrays appears as follows: array-var = new type [size]; Here, type specifies the type of data being allocated, size specifies the number of elements in the array, and array-var is the array variable that is linked to the array. That is, to use new to allocate an array, you must specify the type and number of elements to allocate. The elements in the array allocated by new will automatically be initialized to zero (for numeric types), false (for boolean), or null (for reference types, which are described in a later chapter). This example allocates a 12-element array of integers and links them to month_days: month_days = new int[12];
After this statement executes, month_days will refer to an array of 12 integers. Further, all elements in the array will be initialized to zero. Let’s review: Obtaining an array is a two-step process. First, you must declare a variable of the desired array type. Second, you must allocate the memory that will hold the array, using new, and assign it to the array variable. Thus, in Java
all arrays are dynamically allocated. If the concept of dynamic allocation is unfamiliar to you, don’t worry. It will be described at length later in this book. Once you have allocated an array, you can access a specific element in the array by specifying its index within square brackets. All array indexes start at zero. For example, this statement assigns the value 28 to the second element of month_days: month_days[1] = 28;
The next line displays the value stored at index 3: System.out.println(month_days[3]);
Putting together all the pieces, here is a program that creates an array of the number of days in each month:
When you run this program, it prints the number of days in April. As mentioned, Java array indexes start with zero, so the number of days in April is month_days[3] or 30.
It is possible to combine the declaration of the array variable with the allocation of the array itself, as shown here: int month_days[] = new int[12];
This is the way that you will normally see it done in professionally written Java programs. Arrays can be initialized when they are declared. The process is much the same as that used to initialize the simple types. An array initializer is a list of comma-separated expressions surrounded by curly braces. The commas separate the values of the array elements. The array will automatically be created large enough to hold the number of elements you specify in the array initializer. There is no need to use new. For example, to store the number of days in each month, the following code creates an initialized array of integers:
When you run this program, you see the same output as that generated by the previous version. Java strictly checks to make sure you do not accidentally try to store or reference values outside of the range of the array. The Java run-time system will check that all array indexes are in the correct range. For example, the run-time system will check the value of each index into month_days to make sure that it is between 0 and 11 inclusive. If you try to access elements outside the range of the array (negative numbers or numbers greater than the length of the array), you will cause a run-time error. Here is one more example that uses a one-dimensional array. It finds the average of a set of numbers.
Multidimensional Arrays In Java, multidimensional arrays are implemented as arrays of arrays. To declare a multidimensional array variable, specify each additional index using another set of square brackets. For example, the following declares a two-dimensional array variable called twoD: int twoD[][] = new int[4][5];
This allocates a 4 by 5 array and assigns it to twoD. Internally, this matrix is implemented as an array of arrays of int. Conceptually, this array will look like the one shown in Figure 3-1.
Figure 3-1 A conceptual view of a 4 by 5, two-dimensional array The following program numbers each element in the array from left to right, top to bottom, and then displays these values:
This program generates the following output: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
When you allocate memory for a multidimensional array, you need only specify the memory for the first (leftmost) dimension. You can allocate the remaining dimensions separately. For example, this following code allocates memory for the first dimension of twoD when it is declared. It allocates the second dimension separately. int twoD[][] = new int[4][]; twoD[0] = new int[5]; twoD[1] = new int[5]; twoD[2] = new int[5]; twoD[3] = new int[5];
While there is no advantage to individually allocating the second dimension arrays in this situation, there may be in others. For example, when you allocate dimensions individually, you do not need to allocate the same number of
elements for each dimension. As stated earlier, since multidimensional arrays are actually arrays of arrays, the length of each array is under your control. For example, the following program creates a two-dimensional array in which the sizes of the second dimension are unequal:
This program generates the following output: 0 1 2 3 4 5 6 7 8 9
The array created by this program looks like this:
The use of uneven (or irregular) multidimensional arrays may not be appropriate for many applications, because it runs contrary to what people expect to find when a multidimensional array is encountered. However, irregular arrays can be used effectively in some situations. For example, if you need a very large two-dimensional array that is sparsely populated (that is, one in which not all of the elements will be used), then an irregular array might be a perfect solution. It is possible to initialize multidimensional arrays. To do so, simply enclose each dimension’s initializer within its own set of curly braces. The following program creates a matrix where each element contains the product of the row and column indexes. Also notice that you can use expressions as well as literal values inside of array initializers.
When you run this program, you will get the following output: 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 0.0 2.0 4.0 6.0 0.0 3.0 6.0 9.0
As you can see, each row in the array is initialized as specified in the initialization lists. Let’s look at one more example that uses a multidimensional array. The following program creates a 3 by 4 by 5, three-dimensional array. It then loads each element with the product of its indexes. Finally, it displays these products.
This program generates the following output: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 0 2 4 6 8 0 3 6 9 12 0 0 0 0 0 0 2 4 6 8 0 4 8 12 16 0 6 12 18 24
Alternative Array Declaration Syntax There is a second form that may be used to declare an array:
type[ ] var-name; Here, the square brackets follow the type specifier, and not the name of the array variable. For example, the following two declarations are equivalent: int al[] = new int[3]; int[] a2 = new int[3];
The following declarations are also equivalent: char twod1[][] = new char[3][4]; char[][] twod2 = new char[3][4];
This alternative declaration form offers convenience when declaring several arrays at the same time. For example, int[] nums, nums2, nums3; // create three arrays
creates three array variables of type int. It is the same as writing int nums[], nums2[], nums3[]; // create three arrays
The alternative declaration form is also useful when specifying an array as a return type for a method. Both forms are used in this book.
Introducing Type Inference with Local Variables Recently, an exciting new feature called local variable type inference was added to the Java language. To begin, let’s review two important aspects of variables. First, all variables in Java must be declared prior to their use. Second, a variable can be initialized with a value when it is declared. Furthermore, when a variable is initialized, the type of the initializer must be the same as (or convertible to) the declared type of the variable. Thus, in principle, it would not be necessary to specify an explicit type for an initialized variable because it could be inferred by the type of its initializer. Of course, in the past, such inference was not supported, and all variables required an explicitly declared type, whether they were initialized or not. Today, that situation has changed. Beginning with JDK 10, it is now possible to let the compiler infer the type of a local variable based on the type of its initializer, thus avoiding the need to
explicitly specify the type. Local variable type inference offers a number of advantages. For example, it can streamline code by eliminating the need to redundantly specify a variable’s type when it can be inferred from its initializer. It can simplify declarations in cases in which the type name is quite lengthy, such as can be the case with some class names. It can also be helpful when a type is difficult to discern or cannot be denoted. (An example of a type that cannot be denoted is the type of an anonymous class, discussed in Chapter 24.) Furthermore, local variable type inference has become a common part of the contemporary programming environment. Its inclusion in Java helps keep Java up-to-date with evolving trends in language design. To support local variable type inference, the context-sensitive identifier var was added to Java as a reserved type name. To use local variable type inference, the variable must be declared with var as the type name and it must include an initializer. For example, in the past you would declare a local double variable called avg that is initialized with the value 10.0, as shown here: double avg = 10.0;
Using type inference, this declaration can now also be written like this: var avg = 10.0;
In both cases, avg will be of type double. In the first case, its type is explicitly specified. In the second, its type is inferred as double because the initializer 10.0 is of type double. As mentioned, var was added as a context-sensitive identifier. When it is used as the type name in the context of a local variable declaration, it tells the compiler to use type inference to determine the type of the variable being declared based on the type of the initializer. Thus, in a local variable declaration, var is a placeholder for the actual, inferred type. However, when used in most other places, var is simply a user-defined identifier with no special meaning. For example, the following declaration is still valid: int var = 1; // In this case, var is simply a user-defined identifier.
In this case, the type is explicitly specified as int and var is the name of the variable being declared. Even though it is a context-sensitive identifier, there are a few places in which the use of var is illegal. It cannot be used as the name of a
class, for example. The following program puts the preceding discussion into action:
Here is the output: Value of avg: 10.0 Value of var: 1 Value of k: -1
The preceding example uses var to declare only simple variables, but you can also use var to declare an array. For example: var myArray = new int[10]; // This is valid.
Notice that neither var nor myArray has brackets. Instead, the type of myArray is inferred to be int[ ]. Furthermore, you cannot use brackets on the left side of a var declaration. Thus, both of these declarations are invalid: var[] myArray = new int[10]; // Wrong var myArray[] = new int[10]; // Wrong
In the first line, an attempt is made to bracket var. In the second, an attempt is made to bracket myArray. In both cases, the use of the brackets is wrong because the type is inferred from the type of the initializer. It is important to emphasize that var can be used to declare a variable only when that variable is initialized. For example, the following statement is incorrect: var counter; // Wrong! Initializer required.
Also, remember that var can be used only to declare local variables. It cannot be used when declaring instance variables, parameters, or return types, for example. Although the preceding discussion and examples have introduced the basics of local variable type inference, they haven’t shown its full power. As you will see in Chapter 7, local variable type inference is especially effective in shortening declarations that involve long class names. It can also be used with generic types (see Chapter 14), in a try-with-resources statement (see Chapter 13), and with a for loop (see Chapter 5).
Some var Restrictions In addition to those mentioned in the preceding discussion, several other restrictions apply to the use of var. Only one variable can be declared at a time; a variable cannot use null as an initializer; and the variable being declared cannot be used by the initializer expression. Although you can declare an array type using var, you cannot use var with an array initializer. For example, this is valid: var myArray = new int[10]; // This is valid.
but this is not: var myArray = < 1, 2, 3 >; // Wrong
As mentioned earlier, var cannot be used as the name of a class. It also cannot be used as the name of other reference types, including an interface, enumeration, or annotation, or as the name of a generic type parameter, all of which are described later in this book. Here are two other restrictions that relate to Java features described in subsequent chapters but mentioned here in the interest of completeness. Local variable type inference cannot be used to declare the exception type caught by a catch statement. Also, neither lambda
expressions nor method references can be used as initializers. NOTE At the time of this writing, local variable type inference is quite new, and many readers of this book will be using Java environments that don’t support it. So that as many of the code examples as possible will compile and run for all readers, local variable type inference will not be used by most of the programs in the remainder of this edition of the book. Using the full declaration syntax also makes it very clear at a glance what type of variable is being created, which is important for the example code. Of course, going forward, you should consider the use of local variable type inference where appropriate in your own code.
A Few Words About Strings As you may have noticed, in the preceding discussion of data types and arrays there has been no mention of strings or a string data type. This is not because Java does not support such a type—it does. It is just that Java’s string type, called String, is not a primitive type. Nor is it simply an array of characters. Rather, String defines an object, and a full description of it requires an understanding of several object-related features. As such, it will be covered later in this book, after objects are described. However, so that you can use simple strings in example programs, the following brief introduction is in order. The String type is used to declare string variables. You can also declare arrays of strings. A quoted string constant can be assigned to a String variable. A variable of type String can be assigned to another variable of type String. You can use an object of type String as an argument to println( ). For example, consider the following fragment: String str = "this is a test"; System.out.println(str);
Here, str is an object of type String. It is assigned the string "this is a test". This string is displayed by the println( ) statement. As you will see later, String objects have many special features and attributes that make them quite powerful and easy to use. However, for the next few chapters, you will be using them only in their simplest form.
Operators Java provides a rich operator environment. Most of its operators can be divided into the following four groups: arithmetic, bitwise, relational, and logical. Java also defines some additional operators that handle certain special situations. This chapter describes all of Java’s operators except for the type comparison operator instanceof, which is examined in Chapter 13 and the arrow operator (−>), which is described in Chapter 15.
Arithmetic Operators Arithmetic operators are used in mathematical expressions in the same way that they are used in algebra. The following table lists the arithmetic operators:
The operands of the arithmetic operators must be of a numeric type. You
cannot use them on boolean types, but you can use them on char types, since the char type in Java is, essentially, a subset of int.
The Basic Arithmetic Operators The basic arithmetic operations—addition, subtraction, multiplication, and division—all behave as you would expect for all numeric types. The unary minus operator negates its single operand. The unary plus operator simply returns the value of its operand. Remember that when the division operator is applied to an integer type, there will be no fractional component attached to the result. The following simple example program demonstrates the arithmetic operators. It also illustrates the difference between floating-point division and integer division.
When you run this program, you will see the following output: Integer Arithmetic a = 2 b = 6 c = 1 d = -1 e = 1 Floating Point Arithmetic
da = 2.0 db = 6.0 dc = 1.5 dd = -0.5 de = 0.5
The Modulus Operator The modulus operator, %, returns the remainder of a division operation. It can be applied to floating-point types as well as integer types. The following example program demonstrates the %:
When you run this program, you will get the following output: x mod 10 = 2 y mod 10 = 2.25
Arithmetic Compound Assignment Operators Java provides special operators that can be used to combine an arithmetic operation with an assignment. As you probably know, statements like the following are quite common in programming: a = a + 4;
In Java, you can rewrite this statement as shown here: a += 4;
This version uses the += compound assignment operator. Both statements perform the same action: they increase the value of a by 4.
Here is another example, a = a % 2;
which can be expressed as a %= 2;
In this case, the %= obtains the remainder of a /2 and puts that result back into a. There are compound assignment operators for all of the arithmetic, binary operators. Thus, any statement of the form var = var op expression; can be rewritten as var op= expression; The compound assignment operators provide two benefits. First, they save you a bit of typing, because they are “shorthand” for their equivalent long forms. Second, in some cases they are more efficient than are their equivalent long forms. For these reasons, you will often see the compound assignment operators used in professionally written Java programs. Here is a sample program that shows several op= assignments in action:
The output of this program is shown here: a = 6 b = 8 c = 3
Increment and Decrement The ++ and the – – are Java’s increment and decrement operators. They were introduced in Chapter 2. Here they will be discussed in detail. As you will see, they have some special properties that make them quite interesting. Let’s begin by reviewing precisely what the increment and decrement operators do. The increment operator increases its operand by one. The decrement operator decreases its operand by one. For example, this statement: x = x + 1;
can be rewritten like this by use of the increment operator: x++;
Similarly, this statement: x = x - 1;
is equivalent to x--;
These operators are unique in that they can appear both in postfix form, where they follow the operand as just shown, and prefix form, where they precede the operand. In the foregoing examples, there is no difference between the prefix and postfix forms. However, when the increment and/or decrement operators are part of a larger expression, then a subtle, yet powerful, difference between these two forms appears. In the prefix form, the operand is incremented or decremented before the value is obtained for use in the expression. In postfix form, the previous value is obtained for use in the expression, and then the operand is modified. For example: x = 42; y = ++x;
In this case, y is set to 43 as you would expect, because the increment occurs before x is assigned to y. Thus, the line y = ++x; is the equivalent of these two statements: x = x + 1; y = x;
However, when written like this, x = 42; y = x++;
the value of x is obtained before the increment operator is executed, so the value of y is 42. Of course, in both cases x is set to 43. Here, the line y = x++; is the equivalent of these two statements: y = x; x = x + 1;
The following program demonstrates the increment operator.
The output of this program follows: a = 2 b = 3 c = 4 d = 1
The Bitwise Operators Java defines several bitwise operators that can be applied to the integer types: long, int, short, char, and byte. These operators act upon the individual bits of their operands. They are summarized in the following table:
Since the bitwise operators manipulate the bits within an integer: it is important to understand what effects such manipulations may have on a value. Specifically, it is useful to know how Java stores integer values and how it represents negative numbers. So, before continuing, let’s briefly review these two topics. All of the integer types are represented by binary numbers of varying bit widths. For example, the byte value for 42 in binary is 00101010, where each position represents a power of two, starting with 20 at the rightmost bit. The next bit position to the left would be 21, or 2, continuing toward the left with 22, or 4, then 8, 16, 32, and so on. So 42 has 1 bits set at positions 1, 3, and 5 (counting from 0 at the right); thus, 42 is the sum of 21 + 23 + 25, which is 2 + 8 + 32. All of the integer types (except char) are signed integers. This means that they can represent negative values as well as positive ones. Java uses an encoding known as two’s complement, which means that negative numbers are represented by inverting (changing 1’s to 0’s and vice versa) all of the bits in a value, then adding 1 to the result. For example, –42 is represented by inverting all of the bits in 42, or 00101010, which yields 11010101, then adding 1, which
results in 11010110, or –42. To decode a negative number, first invert all of the bits, then add 1. For example, –42, or 11010110 inverted, yields 00101001, or 41, so when you add 1 you get 42. The reason Java (and most other computer languages) uses two’s complement is easy to see when you consider the issue of zero crossing. Assuming a byte value, zero is represented by 00000000. In one’s complement, simply inverting all of the bits creates 11111111, which creates negative zero. The trouble is that negative zero is invalid in integer math. This problem is solved by using two’s complement to represent negative values. When using two’s complement, 1 is added to the complement, producing 100000000. This produces a 1 bit too far to the left to fit back into the byte value, resulting in the desired behavior, where –0 is the same as 0, and 11111111 is the encoding for –1. Although we used a byte value in the preceding example, the same basic principle applies to all of Java’s integer types. Because Java uses two’s complement to store negative numbers—and because all integers are signed values in Java—applying the bitwise operators can easily produce unexpected results. For example, turning on the high-order bit will cause the resulting value to be interpreted as a negative number, whether this is what you intended or not. To avoid unpleasant surprises, just remember that the high-order bit determines the sign of an integer no matter how that highorder bit gets set.
The Bitwise Logical Operators The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of each operation. In the discussion that follows, keep in mind that the bitwise operators are applied to each individual bit within each operand.
The Bitwise NOT Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its operand. For example, the number 42, which has the following bit
pattern: 00101010 becomes 11010101 after the NOT operator is applied.
The Bitwise AND The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in all other cases. Here is an example:
The Bitwise OR The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then the resultant bit is a 1, as shown here:
The Bitwise XOR The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result is 1. Otherwise, the result is zero. The following example shows the effect of the ^. This example also demonstrates a useful attribute of the XOR operation. Notice how the bit pattern of 42 is inverted wherever the second operand has a 1 bit. Wherever the second operand has a 0 bit, the first operand is unchanged. You will find this property useful when performing some types of bit manipulations.
Using the Bitwise Logical Operators The following program demonstrates the bitwise logical operators:
In this example, a and b have bit patterns that present all four possibilities for two binary digits: 0-0, 0-1, 1-0, and 1-1. You can see how the | and & operate on each bit by the results in c and d. The values assigned to e and f are the same and illustrate how the ^ works. The string array named binary holds the humanreadable, binary representation of the numbers 0 through 15. In this example, the array is indexed to show the binary representation of each result. The array is constructed such that the correct string representation of a binary value n is
stored in binary[n]. The value of ~a is ANDed with 0x0f (0000 1111 in binary) in order to reduce its value to less than 16, so it can be printed by use of the binary array. Here is the output from this program:
The Left Shift The left shift operator, num Here, num specifies the number of positions to right-shift the value in value. That is, the >> moves all of the bits in the specified value to the right the number of bit positions specified by num. The following code fragment shifts the value 32 to the right by two positions, resulting in a being set to 8: int a = 32; a = a >> 2; // a now contains 8
When a value has bits that are “shifted off,” those bits are lost. For example, the next code fragment shifts the value 35 to the right two positions, which
causes the two low-order bits to be lost, resulting again in a being set to 8: int a = 35; a = a >> 2; // a contains 8
Looking at the same operation in binary shows more clearly how this happens: 00100011 35 >> 2 00001000 8 Each time you shift a value to the right, it divides that value by two—and discards any remainder. In some cases, you can take advantage of this for highperformance integer division by 2. When you are shifting right, the top (leftmost) bits exposed by the right shift are filled in with the previous contents of the top bit. This is called sign extension and serves to preserve the sign of negative numbers when you shift them right. For example, –8 >> 1 is –4, which, in binary, is 11111000 –8 >> 1 11111100 –4 It is interesting to note that if you shift –1 right, the result always remains –1, since sign extension keeps bringing in more ones in the high-order bits. Sometimes it is not desirable to sign-extend values when you are shifting them to the right. For example, the following program converts a byte value to its hexadecimal string representation. Notice that the shifted value is masked by ANDing it with 0x0f to discard any sign-extended bits so that the value can be used as an index into the array of hexadecimal characters.
Here is the output of this program: b = 0xf1
The Unsigned Right Shift As you have just seen, the >> operator automatically fills the high-order bit with its previous contents each time a shift occurs. This preserves the sign of the value. However, sometimes this is undesirable. For example, if you are shifting something that does not represent a numeric value, you may not want sign extension to take place. This situation is common when you are working with pixel-based values and graphics. In these cases, you will generally want to shift a zero into the high-order bit no matter what its initial value was. This is known as an unsigned shift. To accomplish this, you will use Java’s unsigned, shift-right operator, >>>, which always shifts zeros into the high-order bit. The following code fragment demonstrates the >>>. Here, a is set to –1, which sets all 32 bits to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits with zeros, ignoring normal sign extension. This sets a to 255. int a = -1; a = a >>> 24;
Here is the same operation in binary form to further illustrate what is happening: 11111111 11111111 11111111 11111111 –1 in binary as an int
>>>24 00000000 00000000 00000000 11111111 255 in binary as an int The >>> operator is often not as useful as you might like, since it is only meaningful for 32- and 64-bit values. Remember, smaller values are automatically promoted to int in expressions. This means that sign extension occurs and that the shift will take place on a 32-bit rather than on an 8- or 16-bit value. That is, one might expect an unsigned right shift on a byte value to zerofill beginning at bit 7. But this is not the case, since it is a 32-bit value that is actually being shifted. The following program demonstrates this effect:
The following output of this program shows how the >>> operator appears to do nothing when dealing with bytes. The variable b is set to an arbitrary negative byte value for this demonstration. Then c is assigned the byte value of b shifted right by four, which is 0xff because of the expected sign extension. Then d is assigned the byte value of b unsigned shifted right by four, which you might
have expected to be 0x0f, but is actually 0xff because of the sign extension that happened when b was promoted to int before the shift. The last expression sets e to the byte value of b masked to 8 bits using the AND operator, then shifted right by four, which produces the expected value of 0x0f. Notice that the unsigned shift right operator was not used for d, since the state of the sign bit after the AND was known.
Bitwise Operator Compound Assignments All of the binary bitwise operators have a compound form similar to that of the algebraic operators, which combines the assignment with the bitwise operation. For example, the following two statements, which shift the value in a right by four bits, are equivalent: a = a >> 4; a >>= 4;
Likewise, the following two statements, which result in a being assigned the bitwise expression a OR b, are equivalent: a = a | b; a |= b;
The following program creates a few integer variables and then uses compound bitwise operator assignments to manipulate the variables:
The output of this program is shown here: a = 3 b = 1 c = 6
Relational Operators The relational operators determine the relationship that one operand has to the other. Specifically, they determine equality and ordering. The relational operators are shown here:
The outcome of these operations is a boolean value. The relational operators are
most frequently used in the expressions that control the if statement and the various loop statements. Any type in Java, including integers, floating-point numbers, characters, and Booleans can be compared using the equality test, ==, and the inequality test, !=. Notice that in Java equality is denoted with two equal signs, not one. (Remember: a single equal sign is the assignment operator.) Only numeric types can be compared using the ordering operators. That is, only integer, floatingpoint, and character operands may be compared to see which is greater or less than the other. As stated, the result produced by a relational operator is a boolean value. For example, the following code fragment is perfectly valid: int a = 4; int b = 1; boolean c = a ). It is used in lambda expressions.
Table 4-1 The Precedence of the Java Operators
Using Parentheses Parentheses raise the precedence of the operations that are inside them. This is often necessary to obtain the result you desire. For example, consider the following expression: a >> b + 3
This expression first adds 3 to b and then shifts a right by that result. That is, this expression can be rewritten using redundant parentheses like this: a >> (b + 3)
However, if you want to first shift a right by b positions and then add 3 to that result, you will need to parenthesize the expression like this: (a >> b) + 3
In addition to altering the normal precedence of an operator, parentheses can
sometimes be used to help clarify the meaning of an expression. For anyone reading your code, a complicated expression can be difficult to understand. Adding redundant but clarifying parentheses to complex expressions can help prevent confusion later. For example, which of the following expressions is easier to read? a | 4 + c >> b & 7 (a | (((4 + c) >> b) & 7))
One other point: parentheses (redundant or not) do not degrade the performance of your program. Therefore, adding parentheses to reduce ambiguity does not negatively affect your program.
Control Statements A programming language uses control statements to cause the flow of execution to advance and branch based on changes to the state of a program. Java’s program control statements can be put into the following categories: selection, iteration, and jump. Selection statements allow your program to choose different paths of execution based upon the outcome of an expression or the state of a variable. Iteration statements enable program execution to repeat one or more statements (that is, iteration statements form loops). Jump statements allow your program to execute in a nonlinear fashion. All of Java’s control statements are examined here.
Java’s Selection Statements Java supports two selection statements: if and switch. These statements allow you to control the flow of your program’s execution based upon conditions known only during run time. You will be pleasantly surprised by the power and flexibility contained in these two statements.
if The if statement was introduced in Chapter 2. It is examined in detail here. The if statement is Java’s conditional branch statement. It can be used to route program execution through two different paths. Here is the general form of the if statement: if (condition) statement1; else statement2; Here, each statement may be a single statement or a compound statement enclosed in curly braces (that is, a block). The condition is any expression that returns a boolean value. The else clause is optional. The if works like this: If the condition is true, then statement1 is executed. Otherwise, statement2 (if it exists) is executed. In no case will both statements
be executed. For example, consider the following: int a, b; //. if(a 0) combines the decrement of n and the test for zero into one expression. Here is how it works. First, the – –n statement executes, decrementing n and returning the new value of n. This value is then compared with zero. If it is greater than zero, the loop continues; otherwise, it terminates. The do-while loop is especially useful when you process a menu selection, because you will usually want the body of a menu loop to execute at least once. Consider the following program, which implements a very simple help system for Java’s selection and iteration statements:
Here is a sample run produced by this program:
In the program, the do-while loop is used to verify that the user has entered a valid choice. If not, then the user is reprompted. Since the menu must be displayed at least once, the do-while is the perfect loop to accomplish this. A few other points about this example: Notice that characters are read from the keyboard by calling System.in.read( ). This is one of Java’s console input functions. Although Java’s console I/O methods won’t be discussed in detail until Chapter 13, System.in.read( ) is used here to obtain the user’s choice. It reads characters from standard input (returned as integers, which is why the return value was cast to char). By default, standard input is line buffered, so you must press enter before any characters that you type will be sent to your program. Java’s console input can be a bit awkward to work with. Further, most realworld Java programs will use a graphical user interface (GUI). For these reasons, not much use of console input has been made in this book. However, it is useful in this context. One other point to consider: Because System.in.read( ) is being used, the program must specify the throws java.io.IOException clause. This line is necessary to handle input errors. It is part of Java’s exception handling features, which are discussed in Chapter 10.
for You were introduced to a simple form of the for loop in Chapter 2. As you will see, it is a powerful and versatile construct.
There are two forms of the for loop. The first is the traditional form that has been in use since the original version of Java. The second is the newer “foreach” form, added by JDK 5. Both types of for loops are discussed here, beginning with the traditional form. Here is the general form of the traditional for statement:
If only one statement is being repeated, there is no need for the curly braces. The for loop operates as follows. When the loop first starts, the initialization portion of the loop is executed. Generally, this is an expression that sets the value of the loop control variable, which acts as a counter that controls the loop. It is important to understand that the initialization expression is executed only once. Next, condition is evaluated. This must be a Boolean expression. It usually tests the loop control variable against a target value. If this expression is true, then the body of the loop is executed. If it is false, the loop terminates. Next, the iteration portion of the loop is executed. This is usually an expression that increments or decrements the loop control variable. The loop then iterates, first evaluating the conditional expression, then executing the body of the loop, and then executing the iteration expression with each pass. This process repeats until the controlling expression is false. Here is a version of the “tick” program that uses a for loop:
Declaring Loop Control Variables Inside the for Loop Often the variable that controls a for loop is needed only for the purposes of the loop and is not used elsewhere. When this is the case, it is possible to declare the variable inside the initialization portion of the for. For example, here is the
preceding program recoded so that the loop control variable n is declared as an int inside the for:
When you declare a variable inside a for loop, there is one important point to remember: the scope of that variable ends when the for statement does. (That is, the scope of the variable is limited to the for loop.) Outside the for loop, the variable will cease to exist. If you need to use the loop control variable elsewhere in your program, you will not be able to declare it inside the for loop. When the loop control variable will not be needed elsewhere, most Java programmers declare it inside the for. For example, here is a simple program that tests for prime numbers. Notice that the loop control variable, i, is declared inside the for since it is not needed elsewhere.
Using the Comma There will be times when you will want to include more than one statement in the initialization and iteration portions of the for loop. For example, consider the loop in the following program:
As you can see, the loop is controlled by the interaction of two variables. Since the loop is governed by two variables, it would be useful if both could be included in the for statement, itself, instead of b being handled manually. Fortunately, Java provides a way to accomplish this. To allow two or more variables to control a for loop, Java permits you to include multiple statements in both the initialization and iteration portions of the for. Each statement is separated from the next by a comma. Using the comma, the preceding for loop can be more efficiently coded, as shown here:
In this example, the initialization portion sets the values of both a and b. The two comma-separated statements in the iteration portion are executed each time the loop repeats. The program generates the following output: a = 1
Some for Loop Variations The for loop supports a number of variations that increase its power and applicability. The reason it is so flexible is that its three parts—the initialization, the conditional test, and the iteration—do not need to be used for only those purposes. In fact, the three sections of the for can be used for any purpose you desire. Let’s look at some examples. One of the most common variations involves the conditional expression. Specifically, this expression does not need to test the loop control variable against some target value. In fact, the condition controlling the for can be any Boolean expression. For example, consider the following fragment:
In this example, the for loop continues to run until the boolean variable done is set to true. It does not test the value of i. Here is another interesting for loop variation. Either the initialization or the iteration expression or both may be absent, as in this next program:
Here, the initialization and iteration expressions have been moved out of the for. Thus, parts of the for are empty. While this is of no value in this simple example —indeed, it would be considered quite poor style—there can be times when this type of approach makes sense. For example, if the initial condition is set through a complex expression elsewhere in the program or if the loop control variable changes in a nonsequential manner determined by actions that occur within the body of the loop, it may be appropriate to leave these parts of the for empty. Here is one more for loop variation. You can intentionally create an infinite loop (a loop that never terminates) if you leave all three parts of the for empty. For example:
This loop will run forever because there is no condition under which it will terminate. Although there are some programs, such as operating system command processors, that require an infinite loop, most “infinite loops” are really just loops with special termination requirements. As you will soon see, there is a way to terminate a loop—even an infinite loop like the one shown— that does not make use of the normal loop conditional expression.
The For-Each Version of the for Loop
A second form of for implements a “for-each” style loop. As you may know, contemporary language theory has embraced the for-each concept, and it has become a standard feature that programmers have come to expect. A for-each style loop is designed to cycle through a collection of objects, such as an array, in strictly sequential fashion, from start to finish. In Java, the for-each style of for is also referred to as the enhanced for loop. The general form of the for-each version of the for is shown here: for(type itr-var : collection) statement-block Here, type specifies the type and itr-var specifies the name of an iteration variable that will receive the elements from a collection, one at a time, from beginning to end. The collection being cycled through is specified by collection. There are various types of collections that can be used with the for, but the only type used in this chapter is the array. (Other types of collections that can be used with the for, such as those defined by the Collections Framework, are discussed later in this book.) With each iteration of the loop, the next element in the collection is retrieved and stored in itr-var. The loop repeats until all elements in the collection have been obtained. Because the iteration variable receives values from the collection, type must be the same as (or compatible with) the elements stored in the collection. Thus, when iterating over arrays, type must be compatible with the element type of the array. To understand the motivation behind a for-each style loop, consider the type of for loop that it is designed to replace. The following fragment uses a traditional for loop to compute the sum of the values in an array: int nums[] = < 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 >; int sum = 0; for(int i=0; i java MultipleCatches a = 0 Divide by 0: java.lang.ArithmeticException: / by zero After try/catch blocks. C:\>java MultipleCatches TestArg a = 1 Array index oob: java.lang.ArrayIndexOutOfBoundsException: Index 42 out of bounds for length 1 After try/catch blocks.
When you use multiple catch statements, it is important to remember that exception subclasses must come before any of their superclasses. This is because a catch statement that uses a superclass will catch exceptions of that type plus any of its subclasses. Thus, a subclass would never be reached if it came after its superclass. Further, in Java, unreachable code is an error. For example, consider the following program:
If you try to compile this program, you will receive an error message stating
that the second catch statement is unreachable because the exception has already been caught. Since ArithmeticException is a subclass of Exception, the first catch statement will handle all Exception-based errors, including ArithmeticException. This means that the second catch statement will never execute. To fix the problem, reverse the order of the catch statements.
Nested try Statements The try statement can be nested. That is, a try statement can be inside the block of another try. Each time a try statement is entered, the context of that exception is pushed on the stack. If an inner try statement does not have a catch handler for a particular exception, the stack is unwound and the next try statement’s catch handlers are inspected for a match. This continues until one of the catch statements succeeds, or until all of the nested try statements are exhausted. If no catch statement matches, then the Java run-time system will handle the exception. Here is an example that uses nested try statements:
As you can see, this program nests one try block within another. The program works as follows. When you execute the program with no command-line arguments, a divide-by-zero exception is generated by the outer try block. Execution of the program with one command-line argument generates a divide-
by-zero exception from within the nested try block. Since the inner block does not catch this exception, it is passed on to the outer try block, where it is handled. If you execute the program with two command-line arguments, an array boundary exception is generated from within the inner try block. Here are sample runs that illustrate each case:
Nesting of try statements can occur in less obvious ways when method calls are involved. For example, you can enclose a call to a method within a try block. Inside that method is another try statement. In this case, the try within the method is still nested inside the outer try block, which calls the method. Here is the previous program recoded so that the nested try block is moved inside the method nesttry( ):
The output of this program is identical to that of the preceding example.
throw So far, you have only been catching exceptions that are thrown by the Java runtime system. However, it is possible for your program to throw an exception explicitly, using the throw statement. The general form of throw is shown here: throw ThrowableInstance; Here, ThrowableInstance must be an object of type Throwable or a subclass of Throwable. Primitive types, such as int or char, as well as non-Throwable classes, such as String and Object, cannot be used as exceptions. There are two ways you can obtain a Throwable object: using a parameter in a catch clause or creating one with the new operator. The flow of execution stops immediately after the throw statement; any subsequent statements are not executed. The nearest enclosing try block is inspected to see if it has a catch statement that matches the type of exception. If it does find a match, control is transferred to that statement. If not, then the next enclosing try statement is inspected, and so on. If no matching catch is found, then the default exception handler halts the program and prints the stack trace. Here is a sample program that creates and throws an exception. The handler that catches the exception rethrows it to the outer handler.
This program gets two chances to deal with the same error. First, main( ) sets up an exception context and then calls demoproc( ). The demoproc( ) method then sets up another exception-handling context and immediately throws a new instance of NullPointerException, which is caught on the next line. The exception is then rethrown. Here is the resulting output: Caught inside demoproc. Recaught: java.lang.NullPointerException: demo
The program also illustrates how to create one of Java’s standard exception objects. Pay close attention to this line: throw new NullPointerException("demo");
Here, new is used to construct an instance of NullPointerException. Many of Java’s built-in run-time exceptions have at least two constructors: one with no parameter and one that takes a string parameter. When the second form is used, the argument specifies a string that describes the exception. This string is displayed when the object is used as an argument to print( ) or println( ). It can also be obtained by a call to getMessage( ), which is defined by Throwable.
throws If a method is capable of causing an exception that it does not handle, it must specify this behavior so that callers of the method can guard themselves against that exception. You do this by including a throws clause in the method’s declaration. A throws clause lists the types of exceptions that a method might throw. This is necessary for all exceptions, except those of type Error or RuntimeException, or any of their subclasses. All other exceptions that a method can throw must be declared in the throws clause. If they are not, a compile-time error will result. This is the general form of a method declaration that includes a throws clause:
Here, exception-list is a comma-separated list of the exceptions that a method can throw. Following is an example of an incorrect program that tries to throw an exception that it does not catch. Because the program does not specify a throws clause to declare this fact, the program will not compile.
To make this example compile, you need to make two changes. First, you need to declare that throwOne( ) throws IllegalAccessException. Second, main( ) must define a try / catch statement that catches this exception. The corrected example is shown here:
Here is the output generated by running this example program: inside throwOne caught java.lang.IllegalAccessException: demo
finally When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear path that alters the normal flow through the method. Depending upon how the method is coded, it is even possible for an exception to cause the method to return prematurely. This could be a problem in some methods. For example, if a method opens a file upon entry and closes it upon exit, then you will not want the code that closes the file to be bypassed by the exceptionhandling mechanism. The finally keyword is designed to address this contingency. finally creates a block of code that will be executed after a try /catch block has completed and before the code following the try/catch block. The finally block will execute whether or not an exception is thrown. If an exception is thrown, the finally block will execute even if no catch statement matches the exception. Any time a method is about to return to the caller from inside a try/catch block, via an uncaught exception or an explicit return statement, the finally clause is also executed just before the method returns. This can be useful for closing file handles and freeing up any other resources that might have been
allocated at the beginning of a method with the intent of disposing of them before returning. The finally clause is optional. However, each try statement requires at least one catch or a finally clause. Here is an example program that shows three methods that exit in various ways, none without executing their finally clauses:
In this example, procA( ) prematurely breaks out of the try by throwing an exception. The finally clause is executed on the way out. procB( )’s try statement is exited via a return statement. The finally clause is executed before
procB( ) returns. In procC( ), the try statement executes normally, without error. However, the finally block is still executed. REMEMBER If a finally block is associated with a try, the finally block will be executed upon conclusion of the try.
Here is the output generated by the preceding program: inside procA procA's finally Exception caught inside procB procB's finally inside procC procC's finally
Java’s Built-in Exceptions Inside the standard package java.lang, Java defines several exception classes. A few have been used by the preceding examples. The most general of these exceptions are subclasses of the standard type RuntimeException. As previously explained, these exceptions need not be included in any method’s throws list. In the language of Java, these are called unchecked exceptions because the compiler does not check to see if a method handles or throws these exceptions. The unchecked exceptions defined in java.lang are listed in Table 10-1. Table 10-2 lists those exceptions defined by java.lang that must be included in a method’s throws list if that method can generate one of these exceptions and does not handle it itself. These are called checked exceptions. In addition to the exceptions in java .lang, Java defines several more that relate to its other standard packages.
Table 10-1 Java’s Unchecked RuntimeException Subclasses Defined in java.lang
Table 10-2 Java’s Checked Exceptions Defined in java.lang
Creating Your Own Exception Subclasses Although Java’s built-in exceptions handle most common errors, you will probably want to create your own exception types to handle situations specific to your applications. This is quite easy to do: just define a subclass of Exception (which is, of course, a subclass of Throwable). Your subclasses don’t need to actually implement anything—it is their existence in the type system that allows you to use them as exceptions. The Exception class does not define any methods of its own. It does, of course, inherit those methods provided by Throwable. Thus, all exceptions, including those that you create, have the methods defined by Throwable available to them. They are shown in Table 10-3. You may also wish to override one or more of these methods in exception classes that you create.
Table 10-3 The Methods Defined by Throwable Exception defines four public constructors. Two support chained exceptions,
described in the next section. The other two are shown here: Exception( ) Exception(String msg) The first form creates an exception that has no description. The second form lets you specify a description of the exception. Although specifying a description when an exception is created is often useful, sometimes it is better to override toString( ). Here’s why: The version of toString( ) defined by Throwable (and inherited by Exception) first displays the name of the exception followed by a colon, which is then followed by your description. By overriding toString( ), you can prevent the exception name and colon from being displayed. This makes for a cleaner output, which is desirable in some cases. The following example declares a new subclass of Exception and then uses that subclass to signal an error condition in a method. It overrides the toString( ) method, allowing a carefully tailored description of the exception to be displayed.
This example defines a subclass of Exception called MyException. This subclass is quite simple: It has only a constructor plus an overridden toString( ) method that displays the value of the exception. The ExceptionDemo class defines a method named compute( ) that throws a MyException object. The exception is thrown when compute( )’s integer parameter is greater than 10. The main( ) method sets up an exception handler for MyException, then calls compute( ) with a legal value (less than 10) and an illegal one to show both paths through the code. Here is the result:
Called compute(1) Normal exit Called compute(20) Caught MyException[20]
Chained Exceptions A number of years ago, a feature was incorporated into the exception subsystem: chained exceptions. The chained exception feature allows you to associate another exception with an exception. This second exception describes the cause of the first exception. For example, imagine a situation in which a method throws an ArithmeticException because of an attempt to divide by zero. However, the actual cause of the problem was that an I/O error occurred, which caused the divisor to be set improperly. Although the method must certainly throw an ArithmeticException, since that is the error that occurred, you might also want to let the calling code know that the underlying cause was an I/O error. Chained exceptions let you handle this, and any other situation in which layers of exceptions exist. To allow chained exceptions, two constructors and two methods were added to Throwable. The constructors are shown here: Throwable(Throwable causeExc) Throwable(String msg, Throwable causeExc) In the first form, causeExc is the exception that causes the current exception. That is, causeExc is the underlying reason that an exception occurred. The second form allows you to specify a description at the same time that you specify a cause exception. These two constructors have also been added to the Error, Exception, and RuntimeException classes. The chained exception methods supported by Throwable are getCause( ) and initCause( ). These methods are shown in Table 10-3 and are repeated here for the sake of discussion. Throwable getCause( ) Throwable initCause(Throwable causeExc) The getCause( ) method returns the exception that underlies the current exception. If there is no underlying exception, null is returned. The initCause( ) method associates causeExc with the invoking exception and returns a reference
to the exception. Thus, you can associate a cause with an exception after the exception has been created. However, the cause exception can be set only once. This means that you can call initCause( ) only once for each exception object. Furthermore, if the cause exception was set by a constructor, then you can’t set it again using initCause( ). In general, initCause( ) is used to set a cause for legacy exception classes that don’t support the two additional constructors described earlier. Here is an example that illustrates the mechanics of handling chained exceptions:
The output from the program is shown here:
Caught: java.lang.NullPointerException: top layer Original cause: java.lang.ArithmeticException: cause
In this example, the top-level exception is NullPointerException. To it is added a cause exception, ArithmeticException. When the exception is thrown out of demoproc( ), it is caught by main( ). There, the top-level exception is displayed, followed by the underlying exception, which is obtained by calling getCause( ). Chained exceptions can be carried on to whatever depth is necessary. Thus, the cause exception can, itself, have a cause. Be aware that overly long chains of exceptions may indicate poor design. Chained exceptions are not something that every program will need. However, in cases in which knowledge of an underlying cause is useful, they offer an elegant solution.
Three Additional Exception Features Beginning with JDK 7, three interesting and useful features have been part of the exception system. The first automates the process of releasing a resource, such as a file, when it is no longer needed. It is based on an expanded form of the try statement called try-with-resources, and is described in Chapter 13 when files are introduced. The second feature is called multi-catch, and the third is sometimes referred to as final rethrow or more precise rethrow. These two features are described here. The multi-catch feature allows two or more exceptions to be caught by the same catch clause. It is not uncommon for two or more exception handlers to use the same code sequence even though they respond to different exceptions. Instead of having to catch each exception type individually, you can use a single catch clause to handle all of the exceptions without code duplication. To use a multi-catch, separate each exception type in the catch clause with the OR operator. Each multi-catch parameter is implicitly final. (You can explicitly specify final, if desired, but it is not necessary.) Because each multicatch parameter is implicitly final, it can’t be assigned a new value. Here is a catch statement that uses the multi-catch feature to catch both ArithmeticException and ArrayIndexOutOfBoundsException: catch(ArithmeticException | ArrayIndexOutOfBoundsException e)
The following program shows the multi-catch feature in action:
The program will generate an ArithmeticException when the division by zero is attempted. If you comment out the division statement and remove the comment symbol from the next line, an ArrayIndexOutOfBoundsException is generated. Both exceptions are caught by the single catch statement. The more precise rethrow feature restricts the type of exceptions that can be rethrown to only those checked exceptions that the associated try block throws, that are not handled by a preceding catch clause, and that are a subtype or supertype of the parameter. Although this capability might not be needed often, it is now available for use. For the more precise rethrow feature to be in force, the catch parameter must be either effectively final, which means that it must not be assigned a new value inside the catch block, or explicitly declared final.
Using Exceptions Exception handling provides a powerful mechanism for controlling complex programs that have many dynamic run-time characteristics. It is important to think of try, throw, and catch as clean ways to handle errors and unusual boundary conditions in your program’s logic. Instead of using error return codes to indicate failure, use Java’s exception handling capabilities. Thus, when a method can fail, have it throw an exception. This is a cleaner way to handle
failure modes. One last point: Java’s exception-handling statements should not be considered a general mechanism for nonlocal branching. If you do so, it will only confuse your code and make it hard to maintain.
Multithreaded Programming Java provides built-in support for multithreaded programming. A multithreaded program contains two or more parts that can run concurrently. Each part of such a program is called a thread, and each thread defines a separate path of execution. Thus, multithreading is a specialized form of multitasking. You are almost certainly acquainted with multitasking because it is supported by virtually all modern operating systems. However, there are two distinct types of multitasking: process-based and thread-based. It is important to understand the difference between the two. For many readers, process-based multitasking is the more familiar form. A process is, in essence, a program that is executing. Thus, process-based multitasking is the feature that allows your computer to run two or more programs concurrently. For example, process-based multitasking enables you to run the Java compiler at the same time that you are using a text editor or visiting a web site. In process-based multitasking, a program is the smallest unit of code that can be dispatched by the scheduler. In a thread-based multitasking environment, the thread is the smallest unit of dispatchable code. This means that a single program can perform two or more tasks simultaneously. For instance, a text editor can format text at the same time that it is printing, as long as these two actions are being performed by two separate threads. Thus, process-based multitasking deals with the “big picture,” and thread-based multitasking handles the details. Multitasking threads require less overhead than multitasking processes. Processes are heavyweight tasks that require their own separate address spaces. Interprocess communication is expensive and limited. Context switching from one process to another is also costly. Threads, on the other hand, are lighter weight. They share the same address space and cooperatively share the same heavyweight process. Interthread communication is inexpensive, and context switching from one thread to the next is lower in cost. While Java programs make use of process-based multitasking environments, process-based multitasking is not under Java’s direct control. However, multithreaded multitasking is. Multithreading enables you to write efficient programs that make maximum use of the processing power available in the system. One important way
multithreading achieves this is by keeping idle time to a minimum. This is especially important for the interactive, networked environment in which Java operates because idle time is common. For example, the transmission rate of data over a network is much slower than the rate at which the computer can process it. Even local file system resources are read and written at a much slower pace than they can be processed by the CPU. And, of course, user input is much slower than the computer. In a single-threaded environment, your program has to wait for each of these tasks to finish before it can proceed to the next one—even though most of the time the program is idle, waiting for input. Multithreading helps you reduce this idle time because another thread can run when one is waiting. If you have programmed for operating systems such as Windows, then you are already familiar with multithreaded programming. However, the fact that Java manages threads makes multithreading especially convenient because many of the details are handled for you.
The Java Thread Model The Java run-time system depends on threads for many things, and all the class libraries are designed with multithreading in mind. In fact, Java uses threads to enable the entire environment to be asynchronous. This helps reduce inefficiency by preventing the waste of CPU cycles. The value of a multithreaded environment is best understood in contrast to its counterpart. Single-threaded systems use an approach called an event loop with polling. In this model, a single thread of control runs in an infinite loop, polling a single event queue to decide what to do next. Once this polling mechanism returns with, say, a signal that a network file is ready to be read, then the event loop dispatches control to the appropriate event handler. Until this event handler returns, nothing else can happen in the program. This wastes CPU time. It can also result in one part of a program dominating the system and preventing any other events from being processed. In general, in a single-threaded environment, when a thread blocks (that is, suspends execution) because it is waiting for some resource, the entire program stops running. The benefit of Java’s multithreading is that the main loop/polling mechanism is eliminated. One thread can pause without stopping other parts of your program. For example, the idle time created when a thread reads data from a network or waits for user input can be utilized elsewhere. Multithreading allows animation loops to sleep for a second between each frame without causing the
whole system to pause. When a thread blocks in a Java program, only the single thread that is blocked pauses. All other threads continue to run. As most readers know, over the past few years, multicore systems have become commonplace. Of course, single-core systems are still in widespread use. It is important to understand that Java’s multithreading features work in both types of systems. In a single-core system, concurrently executing threads share the CPU, with each thread receiving a slice of CPU time. Therefore, in a single-core system, two or more threads do not actually run at the same time, but idle CPU time is utilized. However, in multicore systems, it is possible for two or more threads to actually execute simultaneously. In many cases, this can further improve program efficiency and increase the speed of certain operations. NOTE In addition to the multithreading features described in this chapter, you will also want to explore the Fork/Join Framework. It provides a powerful means of creating multithreaded applications that automatically scale to make best use of multicore environments. The Fork/Join Framework is part of Java’s support for parallel programming, which is the name commonly given to the techniques that optimize some types of algorithms for parallel execution in systems that have more than one CPU. For a discussion of the Fork/Join Framework and other concurrency utilities, see Chapter 28. Java’s traditional multithreading capabilities are described here.
Threads exist in several states. Here is a general description. A thread can be running. It can be ready to run as soon as it gets CPU time. A running thread can be suspended, which temporarily halts its activity. A suspended thread can then be resumed, allowing it to pick up where it left off. A thread can be blocked when waiting for a resource. At any time, a thread can be terminated, which halts its execution immediately. Once terminated, a thread cannot be resumed.
Thread Priorities Java assigns to each thread a priority that determines how that thread should be treated with respect to the others. Thread priorities are integers that specify the relative priority of one thread to another. As an absolute value, a priority is meaningless; a higher-priority thread doesn’t run any faster than a lower-priority thread if it is the only thread running. Instead, a thread’s priority is used to decide when to switch from one running thread to the next. This is called a context switch. The rules that determine when a context switch takes place are simple: • A thread can voluntarily relinquish control. This occurs when explicitly yielding, sleeping, or when blocked. In this scenario, all other threads are examined, and the highest-priority thread that is ready to run is given the
CPU. • A thread can be preempted by a higher-priority thread. In this case, a lower-priority thread that does not yield the processor is simply preempted —no matter what it is doing—by a higher-priority thread. Basically, as soon as a higher-priority thread wants to run, it does. This is called preemptive multitasking. In cases where two threads with the same priority are competing for CPU cycles, the situation is a bit complicated. For some operating systems, threads of equal priority are time-sliced automatically in round-robin fashion. For other types of operating systems, threads of equal priority must voluntarily yield control to their peers. If they don’t, the other threads will not run. CAUTION Portability problems can arise from the differences in the way that operating systems contextswitch threads of equal priority.
Synchronization Because multithreading introduces an asynchronous behavior to your programs, there must be a way for you to enforce synchronicity when you need it. For example, if you want two threads to communicate and share a complicated data structure, such as a linked list, you need some way to ensure that they don’t conflict with each other. That is, you must prevent one thread from writing data while another thread is in the middle of reading it. For this purpose, Java implements an elegant twist on an age-old model of interprocess synchronization: the monitor. The monitor is a control mechanism first defined by C.A.R. Hoare. You can think of a monitor as a very small box that can hold only one thread. Once a thread enters a monitor, all other threads must wait until that thread exits the monitor. In this way, a monitor can be used to protect a shared asset from being manipulated by more than one thread at a time. In Java, there is no class “Monitor”; instead, each object has its own implicit monitor that is automatically entered when one of the object’s synchronized methods is called. Once a thread is inside a synchronized method, no other thread can call any other synchronized method on the same object. This enables you to write very clear and concise multithreaded code, because synchronization support is built into the language.
After you divide your program into separate threads, you need to define how they will communicate with each other. When programming with some other languages, you must depend on the operating system to establish communication between threads. This, of course, adds overhead. By contrast, Java provides a clean, low-cost way for two or more threads to talk to each other, via calls to predefined methods that all objects have. Java’s messaging system allows a thread to enter a synchronized method on an object, and then wait there until some other thread explicitly notifies it to come out.
The Thread Class and the Runnable Interface Java’s multithreading system is built upon the Thread class, its methods, and its companion interface, Runnable. Thread encapsulates a thread of execution. Since you can’t directly refer to the ethereal state of a running thread, you will deal with it through its proxy, the Thread instance that spawned it. To create a new thread, your program will either extend Thread or implement the Runnable interface. The Thread class defines several methods that help manage threads. Several of those used in this chapter are shown here:
Thus far, all the examples in this book have used a single thread of execution. The remainder of this chapter explains how to use Thread and Runnable to create and manage threads, beginning with the one thread that all Java programs have: the main thread.
The Main Thread When a Java program starts up, one thread begins running immediately. This is
usually called the main thread of your program, because it is the one that is executed when your program begins. The main thread is important for two reasons: • It is the thread from which other “child” threads will be spawned. • Often, it must be the last thread to finish execution because it performs various shutdown actions. Although the main thread is created automatically when your program is started, it can be controlled through a Thread object. To do so, you must obtain a reference to it by calling the method currentThread( ), which is a public static member of Thread. Its general form is shown here: static Thread currentThread( ) This method returns a reference to the thread in which it is called. Once you have a reference to the main thread, you can control it just like any other thread. Let’s begin by reviewing the following example:
In this program, a reference to the current thread (the main thread, in this case) is obtained by calling currentThread( ), and this reference is stored in the local variable t. Next, the program displays information about the thread. The program then calls setName( ) to change the internal name of the thread. Information about the thread is then redisplayed. Next, a loop counts down from five, pausing one second between each line. The pause is accomplished by the sleep( ) method. The argument to sleep( ) specifies the delay period in milliseconds. Notice the try/catch block around this loop. The sleep( ) method in Thread might throw an InterruptedException. This would happen if some other thread wanted to interrupt this sleeping one. This example just prints a message if it gets interrupted. In a real program, you would need to handle this differently. Here is the output generated by this program: Current thread: Thread[main,5,main] After name change: Thread[My Thread,5,main] 5 4 3 2 1
Notice the output produced when t is used as an argument to println( ). This displays, in order: the name of the thread, its priority, and the name of its group. By default, the name of the main thread is main. Its priority is 5, which is the default value, and main is also the name of the group of threads to which this thread belongs. A thread group is a data structure that controls the state of a collection of threads as a whole. After the name of the thread is changed, t is again output. This time, the new name of the thread is displayed. Let’s look more closely at the methods defined by Thread that are used in the program. The sleep( ) method causes the thread from which it is called to suspend execution for the specified period of milliseconds. Its general form is shown here: static void sleep(long milliseconds) throws InterruptedException The number of milliseconds to suspend is specified in milliseconds. This method may throw an InterruptedException. The sleep( ) method has a second form, shown next, which allows you to specify the period in terms of milliseconds and nanoseconds: static void sleep(long milliseconds, int nanoseconds) throws
InterruptedException This second form is useful only in environments that allow timing periods as short as nanoseconds. As the preceding program shows, you can set the name of a thread by using setName( ). You can obtain the name of a thread by calling getName( ) (but note that this is not shown in the program). These methods are members of the Thread class and are declared like this: final void setName(String threadName) final String getName( ) Here, threadName specifies the name of the thread.
Creating a Thread In the most general sense, you create a thread by instantiating an object of type Thread. Java defines two ways in which this can be accomplished: • You can implement the Runnable interface. • You can extend the Thread class, itself. The following two sections look at each method, in turn.
Implementing Runnable The easiest way to create a thread is to create a class that implements the Runnable interface. Runnable abstracts a unit of executable code. You can construct a thread on any object that implements Runnable. To implement Runnable, a class need only implement a single method called run( ), which is declared like this: public void run( ) Inside run( ), you will define the code that constitutes the new thread. It is important to understand that run( ) can call other methods, use other classes, and declare variables, just like the main thread can. The only difference is that run( ) establishes the entry point for another, concurrent thread of execution within your program. This thread will end when run( ) returns.
After you create a class that implements Runnable, you will instantiate an object of type Thread from within that class. Thread defines several constructors. The one that we will use is shown here: Thread(Runnable threadOb, String threadName) In this constructor, threadOb is an instance of a class that implements the Runnable interface. This defines where execution of the thread will begin. The name of the new thread is specified by threadName. After the new thread is created, it will not start running until you call its start( ) method, which is declared within Thread. In essence, start( ) initiates a call to run( ). The start( ) method is shown here: void start( ) Here is an example that creates a new thread and starts it running:
Inside NewThread’s constructor, a new Thread object is created by the following statement: t = new Thread(this, "Demo Thread");
Passing this as the first argument indicates that you want the new thread to call the run( ) method on this object. Inside main( ), start( ) is called, which starts the thread of execution beginning at the run( ) method. This causes the child thread’s for loop to begin. Next the main thread enters its for loop. Both threads continue running, sharing the CPU in single-core systems, until their loops finish. The output produced by this program is as follows.(Your output may vary based upon the specific execution environment.) Child thread: Thread[Demo Thread,5,main] Main Thread: 5 Child Thread: 5 Child Thread: 4 Main Thread: 4 Child Thread: 3 Child Thread: 2 Main Thread: 3 Child Thread: 1 Exiting child thread.
Main Thread: 2 Main Thread: 1 Main thread exiting.
As mentioned earlier, in a multithreaded program, it is often useful for the main thread to be the last thread to finish running. The preceding program ensures that the main thread finishes last, because the main thread sleeps for 1,000 milliseconds between iterations, but the child thread sleeps for only 500 milliseconds. This causes the child thread to terminate earlier than the main thread. Shortly, you will see a better way to wait for a thread to finish.
Extending Thread The second way to create a thread is to create a new class that extends Thread, and then to create an instance of that class. The extending class must override the run( ) method, which is the entry point for the new thread. As before, a call to start( ) begins execution of the new thread. Here is the preceding program rewritten to extend Thread:
This program generates the same output as the preceding version. As you can see, the child thread is created by instantiating an object of NewThread, which is derived from Thread. Notice the call to super( ) inside NewThread. This invokes the following form of the Thread constructor: public Thread(String threadName) Here, threadName specifies the name of the thread.
Choosing an Approach At this point, you might be wondering why Java has two ways to create child threads, and which approach is better. The answers to these questions turn on the same point. The Thread class defines several methods that can be overridden by a derived class. Of these methods, the only one that must be overridden is run( ). This is, of course, the same method required when you implement Runnable. Many Java programmers feel that classes should be extended only when they are being enhanced or adapted in some way. So, if you will not be overriding any of Thread’s other methods, it is probably best simply to implement Runnable. Also, by implementing Runnable, your thread class does not need to inherit Thread, making it free to inherit a different class. Ultimately, which approach to use is up to you. However, throughout the rest of this chapter, we will create threads by using classes that implement Runnable.
Creating Multiple Threads So far, you have been using only two threads: the main thread and one child thread. However, your program can spawn as many threads as it needs. For example, the following program creates three child threads:
Sample output from this program is shown here. (Your output may vary based upon the specific execution environment.) New thread: Thread[One,5,main] New thread: Thread[Two,5,main] New thread: Thread[Three,5,main] One: 5 Two: 5 Three: 5 One: 4 Two: 4 Three: 4 One: 3 Three: 3 Two: 3 One: 2 Three: 2 Two: 2 One: 1 Three: 1 Two: 1
One exiting. Two exiting. Three exiting. Main thread exiting.
As you can see, once started, all three child threads share the CPU. Notice the call to sleep(10000) in main( ). This causes the main thread to sleep for ten seconds and ensures that it will finish last.
Using isAlive( ) and join( ) As mentioned, often you will want the main thread to finish last. In the preceding examples, this is accomplished by calling sleep( ) within main( ), with a long enough delay to ensure that all child threads terminate prior to the main thread. However, this is hardly a satisfactory solution, and it also raises a larger question: How can one thread know when another thread has ended? Fortunately, Thread provides a means by which you can answer this question. Two ways exist to determine whether a thread has finished. First, you can call isAlive( ) on the thread. This method is defined by Thread, and its general form is shown here: final boolean isAlive( ) The isAlive( ) method returns true if the thread upon which it is called is still running. It returns false otherwise. While isAlive( ) is occasionally useful, the method that you will more commonly use to wait for a thread to finish is called join( ), shown here: final void join( ) throws InterruptedException This method waits until the thread on which it is called terminates. Its name comes from the concept of the calling thread waiting until the specified thread joins it. Additional forms of join( ) allow you to specify a maximum amount of time that you want to wait for the specified thread to terminate. Here is an improved version of the preceding example that uses join( ) to ensure that the main thread is the last to stop. It also demonstrates the isAlive( ) method.
Sample output from this program is shown here. (Your output may vary based
upon the specific execution environment.) New thread: Thread[One,5,main] New thread: Thread[Two,5,main] New thread: Thread[Three,5,main] Thread One is alive: true Thread Two is alive: true Thread Three is alive: true Waiting for threads to finish. One: 5 Two: 5 Three: 5 One: 4 Two: 4 Three: 4 One: 3 Two: 3 Three: 3 One: 2 Two: 2 Three: 2 One: 1 Two: 1 Three: 1 Two exiting. Three exiting. One exiting. Thread One is alive: false Thread Two is alive: false Thread Three is alive: false Main thread exiting.
As you can see, after the calls to join( ) return, the threads have stopped executing.
Thread Priorities Thread priorities are used by the thread scheduler to decide when each thread should be allowed to run. In theory, over a given period of time, higher-priority threads get more CPU time than lower-priority threads. In practice, the amount of CPU time that a thread gets often depends on several factors besides its priority. (For example, how an operating system implements multitasking can affect the relative availability of CPU time.) A higher-priority thread can also preempt a lower-priority one. For instance, when a lower-priority thread is running and a higher-priority thread resumes (from sleeping or waiting on I/O,
for example), it will preempt the lower-priority thread. In theory, threads of equal priority should get equal access to the CPU. But you need to be careful. Remember, Java is designed to work in a wide range of environments. Some of those environments implement multitasking fundamentally differently than others. For safety, threads that share the same priority should yield control once in a while. This ensures that all threads have a chance to run under a nonpreemptive operating system. In practice, even in nonpreemptive environments, most threads still get a chance to run, because most threads inevitably encounter some blocking situation, such as waiting for I/O. When this happens, the blocked thread is suspended and other threads can run. But, if you want smooth multithreaded execution, you are better off not relying on this. Also, some types of tasks are CPU-intensive. Such threads dominate the CPU. For these types of threads, you want to yield control occasionally so that other threads can run. To set a thread’s priority, use the setPriority( ) method, which is a member of Thread. This is its general form: final void setPriority(int level) Here, level specifies the new priority setting for the calling thread. The value of level must be within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and 10, respectively. To return a thread to default priority, specify NORM_PRIORITY, which is currently 5. These priorities are defined as static final variables within Thread. You can obtain the current priority setting by calling the getPriority( ) method of Thread, shown here: final int getPriority( ) Implementations of Java may have radically different behavior when it comes to scheduling. Most of the inconsistencies arise when you have threads that are relying on preemptive behavior, instead of cooperatively giving up CPU time. The safest way to obtain predictable, cross-platform behavior with Java is to use threads that voluntarily give up control of the CPU.
Synchronization When two or more threads need access to a shared resource, they need some way
to ensure that the resource will be used by only one thread at a time. The process by which this is achieved is called synchronization. As you will see, Java provides unique, language-level support for it. Key to synchronization is the concept of the monitor. A monitor is an object that is used as a mutually exclusive lock. Only one thread can own a monitor at a given time. When a thread acquires a lock, it is said to have entered the monitor. All other threads attempting to enter the locked monitor will be suspended until the first thread exits the monitor. These other threads are said to be waiting for the monitor. A thread that owns a monitor can reenter the same monitor if it so desires. You can synchronize your code in either of two ways. Both involve the use of the synchronized keyword, and both are examined here.
Using Synchronized Methods Synchronization is easy in Java, because all objects have their own implicit monitor associated with them. To enter an object’s monitor, just call a method that has been modified with the synchronized keyword. While a thread is inside a synchronized method, all other threads that try to call it (or any other synchronized method) on the same instance have to wait. To exit the monitor and relinquish control of the object to the next waiting thread, the owner of the monitor simply returns from the synchronized method. To understand the need for synchronization, let’s begin with a simple example that does not use it—but should. The following program has three simple classes. The first one, Callme, has a single method named call( ). The call( ) method takes a String parameter called msg. This method tries to print the msg string inside of square brackets. The interesting thing to notice is that after call( ) prints the opening bracket and the msg string, it calls Thread.sleep(1000), which pauses the current thread for one second. The constructor of the next class, Caller, takes a reference to an instance of the Callme class and a String, which are stored in target and msg, respectively. The constructor also creates a new thread that will call this object’s run( ) method. The run( ) method of Caller calls the call( ) method on the target instance of Callme, passing in the msg string. Finally, the Synch class starts by creating a single instance of Callme, and three instances of Caller, each with a unique message string. The same instance of Callme is passed to each Caller.
Here is the output produced by this program: [Hello[Synchronized[World] ] ]
As you can see, by calling sleep( ), the call( ) method allows execution to switch to another thread. This results in the mixed-up output of the three message strings. In this program, nothing exists to stop all three threads from calling the same method, on the same object, at the same time. This is known as a race condition, because the three threads are racing each other to complete the method. This example used sleep( ) to make the effects repeatable and obvious. In most situations, a race condition is more subtle and less predictable, because you can’t be sure when the context switch will occur. This can cause a program to run right one time and wrong the next. To fix the preceding program, you must serialize access to call( ). That is, you must restrict its access to only one thread at a time. To do this, you simply need to precede call( )’s definition with the keyword synchronized, as shown here:
This prevents other threads from entering call( ) while another thread is using it. After synchronized has been added to call( ), the output of the program is as follows: [Hello] [Synchronized] [World]
Any time that you have a method, or group of methods, that manipulates the internal state of an object in a multithreaded situation, you should use the synchronized keyword to guard the state from race conditions. Remember, once a thread enters any synchronized method on an instance, no other thread can enter any other synchronized method on the same instance. However, nonsynchronized methods on that instance will continue to be callable.
The synchronized Statement
While creating synchronized methods within classes that you create is an easy and effective means of achieving synchronization, it will not work in all cases. To understand why, consider the following. Imagine that you want to synchronize access to objects of a class that was not designed for multithreaded access. That is, the class does not use synchronized methods. Further, this class was not created by you, but by a third party, and you do not have access to the source code. Thus, you can’t add synchronized to the appropriate methods within the class. How can access to an object of this class be synchronized? Fortunately, the solution to this problem is quite easy: You simply put calls to the methods defined by this class inside a synchronized block. This is the general form of the synchronized statement:
Here, objRef is a reference to the object being synchronized. A synchronized block ensures that a call to a synchronized method that is a member of objRef’s class occurs only after the current thread has successfully entered objRef’s monitor. Here is an alternative version of the preceding example, using a synchronized block within the run( ) method:
Here, the call( ) method is not modified by synchronized. Instead, the synchronized statement is used inside Caller’s run( ) method. This causes the same correct output as the preceding example, because each thread waits for the prior one to finish before proceeding.
Interthread Communication The preceding examples unconditionally blocked other threads from asynchronous access to certain methods. This use of the implicit monitors in Java objects is powerful, but you can achieve a more subtle level of control through interprocess communication. As you will see, this is especially easy in Java. As discussed earlier, multithreading replaces event loop programming by dividing your tasks into discrete, logical units. Threads also provide a secondary benefit: they do away with polling. Polling is usually implemented by a loop that is used to check some condition repeatedly. Once the condition is true, appropriate action is taken. This wastes CPU time. For example, consider the classic queuing problem, where one thread is producing some data and another is consuming it. To make the problem more interesting, suppose that the producer has to wait until the consumer is finished before it generates more data. In a polling system, the consumer would waste many CPU cycles while it waited for the producer to produce. Once the producer was finished, it would start polling,
wasting more CPU cycles waiting for the consumer to finish, and so on. Clearly, this situation is undesirable. To avoid polling, Java includes an elegant interprocess communication mechanism via the wait( ), notify( ), and notifyAll( ) methods. These methods are implemented as final methods in Object, so all classes have them. All three methods can be called only from within a synchronized context. Although conceptually advanced from a computer science perspective, the rules for using these methods are actually quite simple: • wait( ) tells the calling thread to give up the monitor and go to sleep until some other thread enters the same monitor and calls notify( ) or notifyAll( ). • notify( ) wakes up a thread that called wait( ) on the same object. • notifyAll( ) wakes up all the threads that called wait( ) on the same object. One of the threads will be granted access. These methods are declared within Object, as shown here: final void wait( ) throws InterruptedException final void notify( ) final void notify All( ) Additional forms of wait( ) exist that allow you to specify a period of time to wait. Before working through an example that illustrates interthread communication, an important point needs to be made. Although wait( ) normally waits until notify( ) or notifyAll( ) is called, there is a possibility that in very rare cases the waiting thread could be awakened due to a spurious wakeup. In this case, a waiting thread resumes without notify( ) or notifyAll( ) having been called. (In essence, the thread resumes for no apparent reason.) Because of this remote possibility, the Java API documentation recommends that calls to wait( ) should take place within a loop that checks the condition on which the thread is waiting. The following example shows this technique. Let’s now work through an example that uses wait( ) and notify( ). To begin, consider the following sample program that incorrectly implements a simple form of the producer/consumer problem. It consists of four classes: Q, the queue that you’re trying to synchronize; Producer, the threaded object that is producing queue entries; Consumer, the threaded object that is consuming queue entries; and PC, the tiny class that creates the single Q, Producer, and
Although the put( ) and get( ) methods on Q are synchronized, nothing stops the producer from overrunning the consumer, nor will anything stop the consumer from consuming the same queue value twice. Thus, you get the erroneous output shown here (the exact output will vary with processor speed and task load):
Put: 1 Got: 1 Got: 1 Got: 1 Got: 1 Got: 1 Put: 2 Put: 3 Put: 4 Put: 5 Put: 6 Put: 7 Got: 7
As you can see, after the producer put 1, the consumer started and got the same 1 five times in a row. Then, the producer resumed and produced 2 through 7 without letting the consumer have a chance to consume them. The proper way to write this program in Java is to use wait( ) and notify( ) to signal in both directions, as shown here:
Inside get( ), wait( ) is called. This causes its execution to suspend until Producer notifies you that some data is ready. When this happens, execution
inside get( ) resumes. After the data has been obtained, get( ) calls notify( ). This tells Producer that it is okay to put more data in the queue. Inside put( ), wait( ) suspends execution until Consumer has removed the item from the queue. When execution resumes, the next item of data is put in the queue, and notify( ) is called. This tells Consumer that it should now remove it. Here is some output from this program, which shows the clean synchronous behavior: Put: 1 Got: 1 Put: 2 Got: 2 Put: 3 Got: 3 Put: 4 Got: 4 Put: 5 Got: 5
Deadlock A special type of error that you need to avoid that relates specifically to multitasking is deadlock, which occurs when two threads have a circular dependency on a pair of synchronized objects. For example, suppose one thread enters the monitor on object X and another thread enters the monitor on object Y. If the thread in X tries to call any synchronized method on Y, it will block as expected. However, if the thread in Y, in turn, tries to call any synchronized method on X, the thread waits forever, because to access X, it would have to release its own lock on Y so that the first thread could complete. Deadlock is a difficult error to debug for two reasons: • In general, it occurs only rarely, when the two threads time-slice in just the right way. • It may involve more than two threads and two synchronized objects. (That is, deadlock can occur through a more convoluted sequence of events than just described.) To understand deadlock fully, it is useful to see it in action. The next example creates two classes, A and B, with methods foo( ) and bar( ), respectively, which pause briefly before trying to call a method in the other class. The main class, named Deadlock, creates an A and a B instance, and then calls deadlockStart( ) to start a second thread that sets up the deadlock condition. The foo( ) and bar( )
methods use sleep( ) as a way to force the deadlock condition to occur.
When you run this program, you will see the output shown here, although whether A.foo( ) or B.bar( ) executes first will vary based on the specific execution environment. MainThread entered A.foo RacingThread entered B.bar MainThread trying to call B.last() RacingThread trying to call A.last()
Because the program has deadlocked, you need to press CTRL-C to end the program. You can see a full thread and monitor cache dump by pressing CTRLBREAK on a PC. You will see that RacingThread owns the monitor on b, while it is waiting for the monitor on a. At the same time, MainThread owns a and is waiting to get b. This program will never complete. As this example illustrates, if your multithreaded program locks up occasionally, deadlock is one of the first conditions that you should check for.
Suspending, Resuming, and Stopping Threads Sometimes, suspending execution of a thread is useful. For example, a separate thread can be used to display the time of day. If the user doesn’t want a clock, then its thread can be suspended. Whatever the case, suspending a thread is a simple matter. Once suspended, restarting the thread is also a simple matter. The mechanisms to suspend, stop, and resume threads differ between early versions of Java, such as Java 1.0, and more modern versions, beginning with Java 2. Prior to Java 2, a program used suspend( ), resume( ), and stop( ), which are methods defined by Thread, to pause, restart, and stop the execution of a thread. Although these methods seem to be a perfectly reasonable and convenient approach to managing the execution of threads, they must not be used for new Java programs. Here’s why. The suspend( ) method of the Thread class was deprecated by Java 2 several years ago. This was done because suspend( ) can sometimes cause serious system failures. Assume that a thread has obtained locks on critical data structures. If that thread is suspended at that point, those locks are not relinquished. Other threads that may be waiting for those resources can be deadlocked. The resume( ) method is also deprecated. It does not cause problems, but cannot be used without the suspend( ) method as its counterpart.
The stop( ) method of the Thread class, too, was deprecated by Java 2. This was done because this method can sometimes cause serious system failures. Assume that a thread is writing to a critically important data structure and has completed only part of its changes. If that thread is stopped at that point, that data structure might be left in a corrupted state. The trouble is that stop( ) causes any lock the calling thread holds to be released. Thus, the corrupted data might be used by another thread that is waiting on the same lock. Because you can’t now use the suspend( ), resume( ), or stop( ) methods to control a thread, you might be thinking that no way exists to pause, restart, or terminate a thread. But, fortunately, this is not true. Instead, a thread must be designed so that the run( ) method periodically checks to determine whether that thread should suspend, resume, or stop its own execution. Typically, this is accomplished by establishing a flag variable that indicates the execution state of the thread. As long as this flag is set to “running,” the run( ) method must continue to let the thread execute. If this variable is set to “suspend,” the thread must pause. If it is set to “stop,” the thread must terminate. Of course, a variety of ways exist in which to write such code, but the central theme will be the same for all programs. The following example illustrates how the wait( ) and notify( ) methods that are inherited from Object can be used to control the execution of a thread. Let us consider its operation. The NewThread class contains a boolean instance variable named suspendFlag, which is used to control the execution of the thread. It is initialized to false by the constructor. The run( ) method contains a synchronized statement block that checks suspendFlag. If that variable is true, the wait( ) method is invoked to suspend the execution of the thread. The mysuspend( ) method sets suspendFlag to true. The myresume( ) method sets suspendFlag to false and invokes notify( ) to wake up the thread. Finally, the main( ) method has been modified to invoke the mysuspend( ) and myresume( ) methods.
When you run the program, you will see the threads suspend and resume. Later in this book, you will see more examples that use the modern mechanism of thread control. Although this mechanism may not appear as simple to use as the old way, nevertheless, it is the way required to ensure that run-time errors don’t occur. It is the approach that must be used for all new code.
Obtaining a Thread’s State As mentioned earlier in this chapter, a thread can exist in a number of different states. You can obtain the current state of a thread by calling the getState( ) method defined by Thread. It is shown here: Thread.State getState( ) It returns a value of type Thread.State that indicates the state of the thread at the time at which the call was made. State is an enumeration defined by Thread. (An enumeration is a list of named constants. It is discussed in detail in Chapter 12.) Here are the values that can be returned by getState( ):
Figure 11-1 diagrams how the various thread states relate.
Figure 11-1 Thread states Given a Thread instance, you can use getState( ) to obtain the state of a thread. For example, the following sequence determines if a thread called thrd is in the RUNNABLE state at the time getState( ) is called: Thread.State ts = thrd.getState(); if(ts == Thread.State.RUNNABLE) // .
It is important to understand that a thread’s state may change after the call to getState( ). Thus, depending on the circumstances, the state obtained by calling getState( ) may not reflect the actual state of the thread only a moment later. For this (and other) reasons, getState( ) is not intended to provide a means of
synchronizing threads. It’s primarily used for debugging or for profiling a thread’s run-time characteristics.
Using a Factory Method to Create and Start a Thread In some cases, it is not necessary to separate the creation of a thread from the start of its execution. In other words, sometimes it is convenient to create and start a thread at the same time. One way to do this is to use a static factory method. A factory method is a method that returns an object of a class. Typically, factory methods are static methods of a class. They are used for a variety of reasons, such as to set an object to some initial state prior to use, to configure a specific type of object, or in some cases to enable an object to be reused. As it relates to creating and starting a thread, a factory method will create the thread, call start( ) on the thread, and then return a reference to the thread. With this approach, you can create and start a thread through a single method call, thus streamlining your code. For example, assuming the ThreadDemo program shown near the start of this chapter, adding the following factory method to NewThread enables you to create and start a thread in a single step:
Using createAndStart( ), you can now replace this sequence: NewThread nt = new NewThread(); // create a new thread nt.t.start(); // Start the thread
with NewThread nt = NewThread.createAndStart();
Now the thread is created and started in one step. In cases in which you don’t need to keep a reference to the executing thread,
you can sometimes create and start a thread with one line of code, without the use of a factory method. For example, again assuming the ThreadDemo program, the following creates and starts a NewThread thread: new NewThread().t.start();
However, in real-world applications, you will usually need to keep a reference to the thread, so the factory method is often a good choice.
Using Multithreading The key to utilizing Java’s multithreading features effectively is to think concurrently rather than serially. For example, when you have two subsystems within a program that can execute concurrently, make them individual threads. With the careful use of multithreading, you can create very efficient programs. A word of caution is in order, however: If you create too many threads, you can actually degrade the performance of your program rather than enhance it. Remember, some overhead is associated with context switching. If you create too many threads, more CPU time will be spent changing contexts than executing your program! One last point: To create compute-intensive applications that can automatically scale to make use of the available processors in a multicore system, consider using the Fork/Join Framework, which is described in Chapter 28.
Enumerations, Autoboxing, and Annotations This chapter examines three features that were not originally part of Java, but over time each has become a near indispensable aspect of Java programming: enumerations, autoboxing, and annotations. Originally added by JDK 5, each is a feature upon which Java programmers have come to rely because each offers a streamlined approach to handling common programming tasks. This chapter also discusses Java’s type wrappers and introduces reflection.
Enumerations In its simplest form, an enumeration is a list of named constants that define a new data type and its legal values. Thus, an enumeration object can hold only a value that was declared in the list. Other values are not allowed. In other words, an enumeration gives you a way to explicitly specify the only values that a data type can legally have. Enumerations are commonly used to define a set of values that represent a collection of items. For example, you might use an enumeration to represent the error codes that can result from some operation, such as success, failed, or pending; or a list of the states that a device might be in, such as running, stopped, or paused. In early versions of Java, such values were defined using final variables, but enumerations offer a far superior approach. Although Java enumerations might, at first glance, appear similar to enumerations in other languages, this similarity may be only skin deep because, in Java, an enumeration defines a class type. By making enumerations into classes, the capabilities of the enumeration are greatly expanded. For example, in Java, an enumeration can have constructors, methods, and instance variables. Because of their power and flexibility, enumerations are widely used throughout the Java API library.
Enumeration Fundamentals An enumeration is created using the enum keyword. For example, here is a
simple enumeration that lists various apple varieties:
The identifiers Jonathan, GoldenDel, and so on, are called enumeration constants. Each is implicitly declared as a public, static final member of Apple. Furthermore, their type is the type of the enumeration in which they are declared, which is Apple in this case. Thus, in the language of Java, these constants are called self-typed, in which “self” refers to the enclosing enumeration. Once you have defined an enumeration, you can create a variable of that type. However, even though enumerations define a class type, you do not instantiate an enum using new. Instead, you declare and use an enumeration variable in much the same way as you do one of the primitive types. For example, this declares ap as a variable of enumeration type Apple: Apple ap;
Because ap is of type Apple, the only values that it can be assigned (or can contain) are those defined by the enumeration. For example, this assigns ap the value RedDel: ap = Apple.RedDel;
Notice that the symbol RedDel is preceded by Apple. Two enumeration constants can be compared for equality by using the = = relational operator. For example, this statement compares the value in ap with the GoldenDel constant: if(ap == Apple.GoldenDel) // .
An enumeration value can also be used to control a switch statement. Of course, all of the case statements must use constants from the same enum as that used by the switch expression. For example, this switch is perfectly valid:
Notice that in the case statements, the names of the enumeration constants are used without being qualified by their enumeration type name. That is, Winesap, not Apple.Winesap, is used. This is because the type of the enumeration in the switch expression has already implicitly specified the enum type of the case constants. There is no need to qualify the constants in the case statements with their enum type name. In fact, attempting to do so will cause a compilation error. When an enumeration constant is displayed, such as in a println( ) statement, its name is output. For example, given this statement: System.out.println(Apple.Winesap);
the name Winesap is displayed. The following program puts together all of the pieces and demonstrates the Apple enumeration:
The output from the program is shown here: Value of ap: RedDel ap contains GoldenDel. Golden Delicious is yellow.
The values( ) and valueOf( ) Methods All enumerations automatically contain two predefined methods: values( ) and valueOf( ). Their general forms are shown here: public static enum-type [ ] values( ) public static enum-type valueOf(String str ) The values( ) method returns an array that contains a list of the enumeration constants. The valueOf( ) method returns the enumeration constant whose value corresponds to the string passed in str. In both cases, enum-type is the type of the enumeration. For example, in the case of the Apple enumeration shown earlier, the return type of Apple.valueOf("Winesap") is Winesap. The following program demonstrates the values( ) and valueOf( ) methods:
The output from the program is shown here: Here are all Apple constants: Jonathan GoldenDel RedDel Winesap Cortland ap contains Winesap
Notice that this program uses a for-each style for loop to cycle through the array of constants obtained by calling values( ). For the sake of illustration, the
variable allapples was created and assigned a reference to the enumeration array. However, this step is not necessary because the for could have been written as shown here, eliminating the need for the allapples variable:
Now, notice how the value corresponding to the name Winesap was obtained by calling valueOf( ). ap = Apple.valueOf("Winesap");
As explained, valueOf( ) returns the enumeration value associated with the name of the constant represented as a string.
Java Enumerations Are Class Types As mentioned, a Java enumeration is a class type. Although you don’t instantiate an enum using new, it otherwise has much the same capabilities as other classes. The fact that enum defines a class gives the Java enumeration extraordinary power. For example, you can give them constructors, add instance variables and methods, and even implement interfaces. It is important to understand that each enumeration constant is an object of its enumeration type. Thus, when you define a constructor for an enum, the constructor is called when each enumeration constant is created. Also, each enumeration constant has its own copy of any instance variables defined by the enumeration. For example, consider the following version of Apple:
The output is shown here: Winesap costs 15 cents. All apple prices: Jonathan costs 10 cents. GoldenDel costs 9 cents. RedDel costs 12 cents. Winesap costs 15 cents. Cortland costs 8 cents.
This version of Apple adds three things. The first is the instance variable price, which is used to hold the price of each variety of apple. The second is the Apple constructor, which is passed the price of an apple. The third is the method getPrice( ), which returns the value of price. When the variable ap is declared in main( ), the constructor for Apple is called once for each constant that is specified. Notice how the arguments to the constructor are specified, by putting them inside parentheses after each constant, as shown here: Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8);
These values are passed to the p parameter of Apple( ), which then assigns this
value to price. Again, the constructor is called once for each constant. Because each enumeration constant has its own copy of price, you can obtain the price of a specified type of apple by calling getPrice( ). For example, in main( ) the price of a Winesap is obtained by the following call: Apple.Winesap.getPrice( )
The prices of all varieties are obtained by cycling through the enumeration using a for loop. Because there is a copy of price for each enumeration constant, the value associated with one constant is separate and distinct from the value associated with another constant. This is a powerful concept, which is only available when enumerations are implemented as classes, as Java does. Although the preceding example contains only one constructor, an enum can offer two or more overloaded forms, just as can any other class. For example, this version of Apple provides a default constructor that initializes the price to – 1, to indicate that no price data is available:
Notice that in this version, RedDel is not given an argument. This means that the default constructor is called, and RedDel’s price variable is given the value –1. Here are two restrictions that apply to enumerations. First, an enumeration can’t inherit another class. Second, an enum cannot be a superclass. This means that an enum can’t be extended. Otherwise, enum acts much like any other class type. The key is to remember that each of the enumeration constants is an object of the class in which it is defined.
Enumerations Inherit Enum Although you can’t inherit a superclass when declaring an enum, all enumerations automatically inherit one: java.lang.Enum. This class defines several methods that are available for use by all enumerations. The Enum class is described in detail in Part II, but three of its methods warrant a discussion at this time.
You can obtain a value that indicates an enumeration constant’s position in the list of constants. This is called its ordinal value, and it is retrieved by calling the ordinal( ) method, shown here: final int ordinal( ) It returns the ordinal value of the invoking constant. Ordinal values begin at zero. Thus, in the Apple enumeration, Jonathan has an ordinal value of zero, GoldenDel has an ordinal value of 1, RedDel has an ordinal value of 2, and so on. You can compare the ordinal value of two constants of the same enumeration by using the compareTo( ) method. It has this general form: final int compareTo(enum-type e) Here, enum-type is the type of the enumeration, and e is the constant being compared to the invoking constant. Remember, both the invoking constant and e must be of the same enumeration. If the invoking constant has an ordinal value less than e’s, then compareTo( ) returns a negative value. If the two ordinal values are the same, then zero is returned. If the invoking constant has an ordinal value greater than e’s, then a positive value is returned. You can compare for equality an enumeration constant with any other object by using equals( ), which overrides the equals( ) method defined by Object. Although equals( ) can compare an enumeration constant to any other object, those two objects will be equal only if they both refer to the same constant, within the same enumeration. Simply having ordinal values in common will not cause equals( ) to return true if the two constants are from different enumerations. Remember, you can compare two enumeration references for equality by using = =. The following program demonstrates the ordinal( ), compareTo( ), and equals( ) methods:
The output from the program is shown here: Here are all apple constants and their ordinal values: Jonathan 0 GoldenDel 1 RedDel 2 Winesap 3 Cortland 4 GoldenDel comes before RedDel RedDel equals RedDel RedDel equals RedDel RedDel == RedDel
Another Enumeration Example Before moving on, we will look at a different example that uses an enum. In Chapter 9, an automated “decision maker” program was created. In that version, variables called NO, YES, MAYBE, LATER, SOON, and NEVER were declared within an interface and used to represent the possible answers. While there is nothing technically wrong with that approach, the enumeration is a better choice. Here is an improved version of that program that uses an enum called Answers to define the answers. You should compare this version to the original in Chapter 9.
Type Wrappers As you know, Java uses primitive types (also called simple types), such as int or double, to hold the basic data types supported by the language. Primitive types, rather than objects, are used for these quantities for the sake of performance. Using objects for these values would add an unacceptable overhead to even the simplest of calculations. Thus, the primitive types are not part of the object hierarchy, and they do not inherit Object. Despite the performance benefit offered by the primitive types, there are times when you will need an object representation. For example, you can’t pass a primitive type by reference to a method. Also, many of the standard data structures implemented by Java operate on objects, which means that you can’t use these data structures to store primitive types. To handle these (and other) situations, Java provides type wrappers, which are classes that encapsulate a primitive type within an object. The type wrapper classes are described in detail in Part II, but they are introduced here because they relate directly to Java’s autoboxing feature. The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and Boolean. These classes offer a wide array of methods that allow you to fully integrate the primitive types into Java’s object hierarchy. Each is briefly examined next.
Character Character is a wrapper around a char. The constructor for Character is Character(char ch) Here, ch specifies the character that will be wrapped by the Character object being created. However, beginning with JDK 9, the Character constructor has been deprecated. Today, it is recommended that you use the static method valueOf( ) to obtain a Character object. It is shown here: static Character valueOf(char ch) It returns a Character object that wraps ch.
To obtain the char value contained in a Character object, call charValue( ), shown here: char charValue( ) It returns the encapsulated character.
Boolean Boolean is a wrapper around boolean values. It defines these constructors: Boolean(boolean boolValue) Boolean(String boolString) In the first version, boolValue must be either true or false. In the second version, if boolString contains the string "true" (in uppercase or lowercase), then the new Boolean object will be true. Otherwise, it will be false. However, beginning with JDK 9, the Boolean constructors have been deprecated. Today, it is recommended that you use the static method valueOf( ) to obtain a Boolean object. It has the two versions shown here: static Boolean valueOf(boolean boolValue) static Boolean valueOf(String boolString) Each returns a Boolean object that wraps the indicated value. To obtain a boolean value from a Boolean object, use booleanValue( ), shown here: boolean booleanValue( ) It returns the boolean equivalent of the invoking object.
The Numeric Type Wrappers By far, the most commonly used type wrappers are those that represent numeric values. These are Byte, Short, Integer, Long, Float, and Double. All of the numeric type wrappers inherit the abstract class Number. Number declares methods that return the value of an object in each of the different number formats. These methods are shown here:
byte byteValue( ) double doubleValue( ) float floatValue( ) int intValue( ) long longValue( ) short shortValue( ) For example, doubleValue( ) returns the value of an object as a double, floatValue( ) returns the value as a float, and so on. These methods are implemented by each of the numeric type wrappers. All of the numeric type wrappers define constructors that allow an object to be constructed from a given value, or a string representation of that value. For example, here are the constructors defined for Integer: Integer(int num) Integer(String str) If str does not contain a valid numeric value, then a NumberFormatException is thrown. However, beginning with JDK 9, the numeric type-wrapper constructors have been deprecated. Today, it is recommended that you use one of the valueOf( ) methods to obtain a wrapper object. The valueOf( ) method is a static member of all of the numeric wrapper classes and all numeric classes support forms that convert a numeric value or a string into an object. For example, here are two of the forms supported by Integer: static Integer valueOf(int val) static Integer valueOf(String valStr) throws NumberFormatException Here, val specifies an integer value and valStr specifies a string that represents a properly formatted numeric value in string form. Each returns an Integer object that wraps the specified value. Here is an example: Integer iOb = Integer.valueOf(100);
After this statement executes, the value 100 is represented by an Integer instance. Thus, iOb wraps the value 100 within an object. In addition to the forms valueOf( ) just shown, the integer wrappers, Byte, Short, Integer, and Long, also supply a form that lets you specify a radix. All of the type wrappers override toString( ). It returns the human-readable
form of the value contained within the wrapper. This allows you to output the value by passing a type wrapper object to println( ), for example, without having to convert it into its primitive type. The following program demonstrates how to use a numeric type wrapper to encapsulate a value and then extract that value.
This program wraps the integer value 100 inside an Integer object called iOb. The program then obtains this value by calling intValue( ) and stores the result in i. The process of encapsulating a value within an object is called boxing. Thus, in the program, this line boxes the value 100 into an Integer: Integer iOb = Integer.valueOf(100);
The process of extracting a value from a type wrapper is called unboxing. For example, the program unboxes the value in iOb with this statement: int i = iOb.intValue();
The same general procedure used by the preceding program to box and unbox values has been available for use since the original version of Java. However, today, Java provides a more streamlined approach, which is described next.
Autoboxing Beginning with JDK 5, Java has included two important features: autoboxing and auto-unboxing. Autoboxing is the process by which a primitive type is
automatically encapsulated (boxed) into its equivalent type wrapper whenever an object of that type is needed. There is no need to explicitly construct an object. Auto-unboxing is the process by which the value of a boxed object is automatically extracted (unboxed) from a type wrapper when its value is needed. There is no need to call a method such as intValue( ) or doubleValue( ). Autoboxing and auto-unboxing greatly streamline the coding of several algorithms, removing the tedium of manually boxing and unboxing values. They also help prevent errors. Moreover, they are very important to generics, which operate only on objects. Finally, autoboxing makes working with the Collections Framework (described in Part II) much easier. With autoboxing, it is not necessary to manually construct an object in order to wrap a primitive type. You need only assign that value to a type-wrapper reference. Java automatically constructs the object for you. For example, here is the modern way to construct an Integer object that has the value 100: Integer iOb = 100; // autobox an int
Notice that the object is not explicitly boxed. Java handles this for you, automatically. To unbox an object, simply assign that object reference to a primitive-type variable. For example, to unbox iOb, you can use this line: int i = iOb; // auto-unbox
Java handles the details for you. Here is the preceding program rewritten to use autoboxing/unboxing:
Autoboxing and Methods In addition to the simple case of assignments, autoboxing automatically occurs whenever a primitive type must be converted into an object; auto-unboxing takes place whenever an object must be converted into a primitive type. Thus, autoboxing/unboxing might occur when an argument is passed to a method, or when a value is returned by a method. For example, consider this:
This program displays the following result: 100
In the program, notice that m( ) specifies an Integer parameter and returns an int result. Inside main( ), m( ) is passed the value 100. Because m( ) is expecting an Integer, this value is automatically boxed. Then, m( ) returns the int equivalent of its argument. This causes v to be auto-unboxed. Next, this int value is assigned to iOb in main( ), which causes the int return value to be autoboxed.
Autoboxing/Unboxing Occurs in Expressions In general, autoboxing and unboxing take place whenever a conversion into an object or from an object is required. This applies to expressions. Within an expression, a numeric object is automatically unboxed. The outcome of the expression is reboxed, if necessary. For example, consider the following program:
The output is shown here: Original value of iOb: 100 After ++iOb: 101 iOb2 after expression: 134 i after expression: 134
In the program, pay special attention to this line: ++iOb;
This causes the value in iOb to be incremented. It works like this: iOb is unboxed, the value is incremented, and the result is reboxed. Auto-unboxing also allows you to mix different types of numeric objects in an expression. Once the values are unboxed, the standard type promotions and conversions are applied. For example, the following program is perfectly valid:
The output is shown here: dOb after expression: 198.6
As you can see, both the Double object dOb and the Integer object iOb participated in the addition, and the result was reboxed and stored in dOb. Because of auto-unboxing, you can use Integer numeric objects to control a switch statement. For example, consider this fragment:
When the switch expression is evaluated, iOb is unboxed and its int value is obtained. As the examples in the programs show, because of autoboxing/unboxing, using numeric objects in an expression is both intuitive and easy. In the past, such code would have involved casts and calls to methods such as intValue( ).
Autoboxing/Unboxing Boolean and Character Values As described earlier, Java also supplies wrappers for boolean and char. These are Boolean and Character. Autoboxing/unboxing applies to these wrappers, too. For example, consider the following program:
The output is shown here: b is true ch2 is x
The most important thing to notice about this program is the auto-unboxing of b inside the if conditional expression. As you should recall, the conditional expression that controls an if must evaluate to type boolean. Because of autounboxing, the boolean value contained within b is automatically unboxed when the conditional expression is evaluated. Thus, with autoboxing/unboxing, a Boolean object can be used to control an if statement. Because of auto-unboxing, a Boolean object can now also be used to control any of Java’s loop statements. When a Boolean is used as the conditional expression of a while, for, or do/while, it is automatically unboxed into its boolean equivalent. For example, this is perfectly valid code: Boolean b; // . while(b) < // .
Autoboxing/Unboxing Helps Prevent Errors In addition to the convenience that it offers, autoboxing/unboxing can also help prevent errors. For example, consider the following program:
This program displays not the expected value of 1000, but –24! The reason is that the value inside iOb is manually unboxed by calling byteValue( ), which causes the truncation of the value stored in iOb, which is 1,000. This results in the garbage value of –24 being assigned to i. Auto-unboxing prevents this type of error because the value in iOb will always auto-unbox into a value compatible with int. In general, because autoboxing always creates the proper object, and autounboxing always produces the proper value, there is no way for the process to produce the wrong type of object or value. In the rare instances where you want a type different than that produced by the automated process, you can still manually box and unbox values. Of course, the benefits of autoboxing/unboxing are lost. In general, you should employ autoboxing/unboxing. It is the way that modern Java code is written.
A Word of Warning Because of autoboxing and auto-unboxing, some might be tempted to use objects such as Integer or Double exclusively, abandoning primitives altogether. For example, with autoboxing/unboxing it is possible to write code like this: // A bad use of autoboxing/unboxing! Double a, b, c; a = 10.0; b = 4.0; c = Math.sqrt(a*a + b*b); System.out.println("Hypotenuse is " + c);
In this example, objects of type Double hold values that are used to calculate the hypotenuse of a right triangle. Although this code is technically correct and does, in fact, work properly, it is a very bad use of autoboxing/unboxing. It is far less efficient than the equivalent code written using the primitive type double. The reason is that each autobox and auto-unbox adds overhead that is not present if the primitive type is used. In general, you should restrict your use of the type wrappers to only those cases in which an object representation of a primitive type is required. Autoboxing/unboxing was not added to Java as a “back door” way of eliminating the primitive types.
Annotations Java provides a feature that enables you to embed supplemental information into a source file. This information, called an annotation, does not change the actions of a program. Thus, an annotation leaves the semantics of a program unchanged. However, this information can be used by various tools during both development and deployment. For example, an annotation might be processed by a sourcecode generator. The term metadata is also used to refer to this feature, but the term annotation is the most descriptive and more commonly used.
Annotation Basics An annotation is created through a mechanism based on the interface. Let’s begin with an example. Here is the declaration for an annotation called MyAnno:
First, notice the @ that precedes the keyword interface. This tells the compiler that an annotation type is being declared. Next, notice the two members str( ) and val( ). All annotations consist solely of method declarations. However, you don’t provide bodies for these methods. Instead, Java implements these methods. Moreover, the methods act much like fields, as you will see.
An annotation cannot include an extends clause. However, all annotation types automatically extend the Annotation interface. Thus, Annotation is a super-interface of all annotations. It is declared within the java.lang.annotation package. It overrides hashCode( ), equals( ), and toString( ), which are defined by Object. It also specifies annotationType( ), which returns a Class object that represents the invoking annotation. Once you have declared an annotation, you can use it to annotate something. Prior to JDK 8, annotations could be used only on declarations, and that is where we will begin. (JDK 8 added the ability to annotate type use, and this is described later in this chapter. However, the same basic techniques apply to both kinds of annotations.) Any type of declaration can have an annotation associated with it. For example, classes, methods, fields, parameters, and enum constants can be annotated. Even an annotation can be annotated. In all cases, the annotation precedes the rest of the declaration. When you apply an annotation, you give values to its members. For example, here is an example of MyAnno being applied to a method declaration: // Annotate a method. @MyAnno(str = "Annotation Example", val = 100) public static void myMeth() < // .
This annotation is linked with the method myMeth( ). Look closely at the annotation syntax. The name of the annotation, preceded by an @, is followed by a parenthesized list of member initializations. To give a member a value, that member’s name is assigned a value. Therefore, in the example, the string "Annotation Example" is assigned to the str member of MyAnno. Notice that no parentheses follow str in this assignment. When an annotation member is given a value, only its name is used. Thus, annotation members look like fields in this context.
Specifying a Retention Policy Before exploring annotations further, it is necessary to discuss annotation retention policies. A retention policy determines at what point an annotation is discarded. Java defines three such policies, which are encapsulated within the java.lang.annotation.RetentionPolicy enumeration. They are SOURCE, CLASS, and RUNTIME. An annotation with a retention policy of SOURCE is retained only in the source file and is discarded during compilation.
An annotation with a retention policy of CLASS is stored in the .class file during compilation. However, it is not available through the JVM during run time. An annotation with a retention policy of RUNTIME is stored in the .class file during compilation and is available through the JVM during run time. Thus, RUNTIME retention offers the greatest annotation persistence. NOTE An annotation on a local variable declaration is not retained in the .class file.
A retention policy is specified for an annotation by using one of Java’s builtin annotations: @Retention. Its general form is shown here: @Retention(retention-policy) Here, retention-policy must be one of the previously discussed enumeration constants. If no retention policy is specified for an annotation, then the default policy of CLASS is used. The following version of MyAnno uses @Retention to specify the RUNTIME retention policy. Thus, MyAnno will be available to the JVM during program execution.
Obtaining Annotations at Run Time by Use of Reflection Although annotations are designed mostly for use by other development or deployment tools, if they specify a retention policy of RUNTIME, then they can be queried at run time by any Java program through the use of reflection. Reflection is the feature that enables information about a class to be obtained at run time. The reflection API is contained in the java.lang.reflect package. There are a number of ways to use reflection, and we won’t examine them all here. We will, however, walk through a few examples that apply to annotations. The first step to using reflection is to obtain a Class object that represents the class whose annotations you want to obtain. Class is one of Java’s built-in
classes and is defined in java.lang. It is described in detail in Part II. There are various ways to obtain a Class object. One of the easiest is to call getClass( ), which is a method defined by Object. Its general form is shown here: final Class getClass( ) It returns the Class object that represents the invoking object. NOTE Notice the that follows Class in the declaration of getClass( ) just shown. This is related to Java’s generics feature. getClass( ) and several other reflection-related methods discussed in this chapter make use of generics. Generics are described in Chapter 14. However, an understanding of generics is not needed to grasp the fundamental principles of reflection.
After you have obtained a Class object, you can use its methods to obtain information about the various items declared by the class, including its annotations. If you want to obtain the annotations associated with a specific item declared within a class, you must first obtain an object that represents that item. For example, Class supplies (among others) the getMethod( ), getField( ), and getConstructor( ) methods, which obtain information about a method, field, and constructor, respectively. These methods return objects of type Method, Field, and Constructor. To understand the process, let’s work through an example that obtains the annotations associated with a method. To do this, you first obtain a Class object that represents the class, and then call getMethod( ) on that Class object, specifying the name of the method. getMethod( ) has this general form: Method getMethod(String methName, Class . paramTypes) The name of the method is passed in methName. If the method has arguments, then Class objects representing those types must also be specified by paramTypes. Notice that paramTypes is a varargs parameter. This means that you can specify as many parameter types as needed, including zero. getMethod( ) returns a Method object that represents the method. If the method can’t be found, NoSuchMethodException is thrown. From a Class, Method, Field, or Constructor object, you can obtain a specific annotation associated with that object by calling getAnnotation( ). Its general form is shown here: getAnnotation(Class annoType) Here, annoType is a Class object that represents the annotation in which you are
interested. The method returns a reference to the annotation. Using this reference, you can obtain the values associated with the annotation’s members. The method returns null if the annotation is not found, which will be the case if the annotation does not have RUNTIME retention. Here is a program that assembles all of the pieces shown earlier and uses reflection to display the annotation associated with a method:
The output from the program is shown here: Annotation Example 100
This program uses reflection as described to obtain and display the values of str and val in the MyAnno annotation associated with myMeth( ) in the Meta class. There are two things to pay special attention to. First, in this line MyAnno anno = m.getAnnotation(MyAnno.class);
notice the expression MyAnno.class. This expression evaluates to a Class object of type MyAnno, the annotation. This construct is called a class literal. You can use this type of expression whenever a Class object of a known class is needed. For example, this statement could have been used to obtain the Class object for Meta:
Class c = Meta.class;
Of course, this approach only works when you know the class name of an object in advance, which might not always be the case. In general, you can obtain a class literal for classes, interfaces, primitive types, and arrays. (Remember, the syntax relates to Java’s generics feature. It is described in Chapter 14.) The second point of interest is the way the values associated with str and val are obtained when they are output by the following line: System.out.println(anno.str() + " " + anno.val());
Notice that they are invoked using the method-call syntax. This same approach is used whenever the value of an annotation member is required.
A Second Reflection Example In the preceding example, myMeth( ) has no parameters. Thus, when getMethod( ) was called, only the name myMeth was passed. However, to obtain a method that has parameters, you must specify class objects representing the types of those parameters as arguments to getMethod( ). For example, here is a slightly different version of the preceding program:
The output from this version is shown here: Two Parameters 19
In this version, myMeth( ) takes a String and an int parameter. To obtain information about this method, getMethod( ) must be called as shown here: Method m = c.getMethod("myMeth", String.class, int.class);
Here, the Class objects representing String and int are passed as additional arguments.
Obtaining All Annotations You can obtain all annotations that have RUNTIME retention that are associated with an item by calling getAnnotations( ) on that item. It has this general form: Annotation[ ] getAnnotations( ) It returns an array of the annotations. getAnnotations( ) can be called on objects of type Class, Method, Constructor, and Field, among others. Here is another reflection example that shows how to obtain all annotations associated with a class and with a method. It declares two annotations. It then uses those annotations to annotate a class and a method.
The output is shown here: All annotations for Meta2: @What(description=An annotation test class) @MyAnno(str=Meta2, val=99) All annotations for myMeth: @What(description=An annotation test method) @MyAnno(str=Testing, val=100)
The program uses getAnnotations( ) to obtain an array of all annotations associated with the Meta2 class and with the myMeth( ) method. As explained, getAnnotations( ) returns an array of Annotation objects. Recall that Annotation is a super-interface of all annotation interfaces and that it overrides toString( ) in Object. Thus, when a reference to an Annotation is output, its toString( ) method is called to generate a string that describes the annotation, as the preceding output shows.
The AnnotatedElement Interface The methods getAnnotation( ) and getAnnotations( ) used by the preceding examples are defined by the AnnotatedElement interface, which is defined in java.lang.reflect. This interface supports reflection for annotations and is implemented by the classes Method, Field, Constructor, Class, and Package, among others. In addition to getAnnotation( ) and getAnnotations( ), AnnotatedElement defines several other methods. Two have been available since annotations were
initially added to Java. The first is getDeclaredAnnotations( ), which has this general form: Annotation[ ] getDeclaredAnnotations( ) It returns all non-inherited annotations present in the invoking object. The second is isAnnotationPresent( ), which has this general form: default boolean isAnnotationPresent(Class